首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A novel approach for in-line solid-phase extraction capillary electrophoresis (SPE-CE) for basic analytes was developed. The method is based on the use of a weak cation-exchange monolith synthesised in situ in the front end of the CE capillary via photoinitiated polymerization to form poly(methacrylic acid-co-ethylene glycol dimethacrylate), which was used to create the SPE phase in-line with the CE separation capillary. The monolithic SPE material exhibited a surface area of 23.1 m2/g and a capacity of 403 nM for dopamine. Adsorption of the analytes as protonated, cationic species onto the SPE phase was achieved using an electrolyte of 6 mM phosphate and 12 mM sodium ion, buffered at pH 7.0, which is above the pKa of the monolith but below the pKa of the analytes. Elution of the analytes from the SPE phase was achieved using an electrolyte with a pH below that of the pKa of the monolith, namely 12 mM phosphate and 12 mM sodium ion, buffered at pH 3.0. Due to the discontinuous electrolyte combination, analytes were simultaneously eluted and focused as the electrophoretically mobilised pH step boundary moved through the SPE monolith, after which the analytes were separated by conventional CZE in the remainder of the capillary. Quantitative extraction from a solution of 0.5 microg/ml dopamine and epinephrine was achieved when flushing up to 15 column volumes of sample through the capillary. The limits of detection (S/N=3) for dopamine and epinephrine were 3.7 and 4.3 ng/ml, and this method provided a sensitivity enhancement for dopamine of 462 times compared to CZE using hydrodynamic injection. The developed method was used to preconcentrate a test mixture of neurotransmitters comprising dopamine, epinephrine, 5-hydroxytryptamine, metanephrine and also histamine. The applicability of this approach to real life samples was demonstrated by using a urine sample from a healthy person to detect dopamine at sub-ppm levels.  相似文献   

2.
A polymer monolith bearing weak cation-exchange functionality was prepared for the purpose of demonstrating pH-selective extraction and elution in in-line solid-phase extraction-capillary electrophoresis (SPE-CE) utilising a model set of cationic analytes, namely imidazole, lutidine and 3-phenylpropanamine. Optimization of the electrolyte conditions for efficient elution of the adsorbed analytes using a moving pH boundary required that the capillary and monolith be filled with 44 mM sodium acetate at high pH (pH 6) and a low pH electrolyte of 3 mM sodium acetate pH 3 was placed in the electrolyte vials. This combination allowed the adsorbed analytes to be simultaneously eluted and focused into narrow bands, with peak widths of the eluted analytes having a baseline width of 1.2 s immediately after the monolith. Using these optimum elution conditions, the versatility of the SPE-CE approach was demonstrated by removing unwanted adsorbed components after extraction with a wash at a different pH and also by selecting a pH at which only some of the model weak bases were ionised. The analytical performance of the approach was evaluated and the relative standard deviation for peak heights, peak area and migration times were in the ranges of 1.4-5.3, 1.2-3.3 and 0.4-1.2% respectively. Analytes exhibited linear calibrations with r(2) values ranging from 0.996 to 0.999 over two orders of magnitude. Analyte pre-concentration provided excellent sensitivity, and limits of detection for the analyte used in this study were in the range 8.0-30 ng ml(-1), which was an enhancement of 63 when compared to normal hydrodynamic injection occupying 1.3% of the capillary of these bases in water.  相似文献   

3.
This paper describes two different approaches for increasing the sensitivity for the analysis of ceftiofur by capillary electrophoresis (CE). Two different techniques based on the introduction of an enlarged volume of sample, namely large volume sample stacking (LVSS) and in-line solid phase extraction (SPE) were studied and compared. LVSS allowed the on-column electrophoretic preconcentration of ceftiofur without modification of the separation capillary. In-line SPE-CE was developed by using a home-made microcartridge that was filled with a reversed-phase sorbent (C18). The microcartridge was coupled in-line near the inlet of the separation capillary. LVSS and in-line SPE-CE allowed automated operation and improved sensitivity for the analysis of ceftiofur with respect to conventional CE. When environmental water samples were analyzed, an additional pretreatment step based on off-line SPE was necessary in both cases to further decrease the detection limits. In terms of sensitivity for the determination of ceftiofur in river water samples, the combination of off-line SPE with in-line SPE-CE was found the most sensitive with a detection limit of 10 ng L−1, whereas the method based on the use of off-line SPE with LVSS presented a detection limit of 100 ng L−1.  相似文献   

4.
The separation of three selective serotonin reuptake inhibitors (SSRIs) by capillary electrophoresis (CE) with fully integrated solid-phase extraction (SPE) is described. Polymeric monolithic SPE modules were prepared in situ within a fused silica capillary from either butyl methacrylate-co-ethylene dimethacrylate or 3-sulfopropyl methacrylate-co-butyl methacrylate-co-ethylene dimethacrylate. Using a 1 cm SPE module placed at the inlet of the capillary, a mixture of sertraline, fluoxetine and fluvoxamine was extracted from aqueous solution by applying a simple pressure rinse. Under pressure-driven conditions, efficient elution was possible from both SPE materials investigated using 50 mM phosphate buffer, pH 3.5 in acetonitrile (20/80, v/v). Two different strategies were investigated for the efficient elution and subsequent CE separation. Injection of an aqueous sample plug directly into the non-aqueous elution/separation buffer was found to be unsuitable with poor elution profiles observed in the electrodriven mode. Alternatively, a sample plug equivalent to several capillary volumes could be injected by pressure followed by filling the capillary with the non-aqueous elution/separation buffer from the outlet end using a combination of pressure and electrodriven flow. Using a neutral monolith, efficient elution/separation was not possible due to an unstable electroosmotic flow (EOF), however, by adding the ionisable monomer, 3-sulfopropyl methacrylate to the SPE module to increase and stabilise the EOF, it was possible to achieve efficient elution from the SPE module, followed by baseline separation by CE using a 200 mM acetate buffer, pH 3.5 in acetonitrile (10/90, v/v). With enrichment factors of over 500 achieved for each of the analytes this demonstrates the potential of in-line SPE-CE for the sensitive analysis of these drugs.  相似文献   

5.
We present a new system for the sensitive analysis of cephalosporins by CE using both on-line SPE and large-volume sample stacking (LVSS). Sample volumes of 250 muL were loaded onto the SPE microcolumn which was then desorbed with 426 nL of ACN. The SPE elution plug was injected into the CE system via an in-line valve interface filling approximately 60% of the volume of the separation capillary. Subsequently, LVSS was performed by applying a voltage of -5 kV, which resulted in the simultaneous removal of the elution solvent and the preconcentration of the analytes in a narrow zone. This way the amount of analyte loaded into the capillary could be considerably increased without serious loss of CE separation efficiency. LODs for cefoperazone and ceftiofur were in the ng/L range which represents an improvement of a factor of 8450 and 11 450 when compared with direct CE injection. The cephalosporin test compounds presented a good linear response (corrected peak area) between 0.5 and 10 mug/L with correlation coefficients higher than 0.995. The final method is compared with previously reported LVSS-CE and SPE-CE systems for the analysis of cephalosporins.  相似文献   

6.
An approach based on staggered multistep elution solid-phase extraction (SPE) capillary electrophoresis/tandem mass spectrometry (CE/MS/MS) was developed in the analysis of digested protein mixtures. On-line coupling of SPE with CE/MS was achieved using a two-leveled two-cross polydimethylsiloxane (PDMS)-based interface. Multistep elution SPE was used prior to CE to provide an additional dimension of separation, thus extending the separation capacity for the peptide mixture analysis. By decreasing in the number of co-eluting peptides, problems stemming from ionization suppression and finite MS/MS duty cycle were reduced. As a result, sequence coverage increased significantly using multistep elution SPE-CE/MS/MS compared to one-step elution SPE-CE/MS/MS in the analysis of a single protein tryptic digest (49% vs. 18%) and a six protein tryptic digest (22-71% vs. 10-44%). A staggered CE method was incorporated to increase the throughput. The electropherograms of consecutive CE runs were partially overlapped by injecting the sample plug at a fixed time interval. With the use of a 5 min injection interval, slightly poor results were obtained in comparison with the sequential CE method while the total analysis time was reduced to 28%.  相似文献   

7.
SPE coupled in-line to CE, as the strategy to enhance the concentration sensitivity in CE, has been used to enrich naproxen in tap water samples. In this study, a microcartridge containing an octadecyl silica (C18) sorbent was placed near the inlet within the separation capillary column. The optimum conditions were obtained when naproxen in an acidic aqueous solution (pH 3.5) was loaded into the capillary at 930 mbar for 30 min, and 20 mM ammonium acetate in methanol/water (70:30 v/v) was used as both an elution solution and a separation BGE. Under these conditions, the sensitivity was enhanced 1820-fold with respect to normal hydrodynamic injection, and the LOD achieved was 0.2 microg/L. To show the capability of the in-line SPE-CE method, tap water samples were analysed after a pretreatment consisting in an off-line C18-SPE procedure. The recovery of this procedure was higher than 80%. Under these conditions, naproxen could be detected at a concentration of 10 ng/L; so the potential of the procedure for the sensitive analysis of this type of drugs in water samples was demonstrated. Afterwards, these results were compared with those previously obtained for naproxen in water samples using different sample stacking techniques.  相似文献   

8.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

9.
Molecularly imprinted polymers (MIPs) have been evaluated as sorbent for the construction of an in-line solid phase extraction concentrator in capillary electrophoresis to be applied in the monitoring of triazine herbicides: atrazine and its three metabolites, desethylatrazine, desisopropylatrazine and desethyldesisopropylatrazine. Initially, the electrophoretic separation of these compounds was optimized. The electrolyte consists of an aqueous solution of 75 mM phosphoric acid (H(3)PO(4)) adjusted to pH 2.1 and containing 0.7 mM cetyltrimethylammonium bromide. After the fabrication and assembly of the concentrator into the capillary, these optimal CE conditions were applied to evaluate the performance of this device. Efficiencies of 40 000-55 000 plates could be achieved and the separation time was around one hour. Different parameters affecting the in-line molecularly imprinted solid-phase extraction in capillary electrophoresis such as composition and volume of the elution plug were optimized. The method was evaluated in terms of linearity, precision and limits of detection and quantification. MIPs were compared with Oasis hydrophilic-lipophilic-balance (HLB) particles for the in-line coupling of solid-phase extraction and capillary electrophoresis. The superior selectivity of MIPs is demonstrated through direct injection of a urine sample spiked with 10 microg/mL atrazine, desethylatrazine, desisopropylatrazine and desethyldesisopropylatrazine. Recoveries were between 92 and 102% compared with an aqueous solution.  相似文献   

10.
The use of two different monoliths located in capillaries for on-line protein digestion, preconcentration of peptides and their separation has been demonstrated. The first monolith was used as support for covalent immobilization of pepsin. This monolith with well-defined porous properties was prepared by in situ copolymerization of 2-vinyl-4,4-dimethylazlactone and ethylene dimethacrylate. The second, poly(lauryl methacrylate-co-ethylene dimethacrylate) monolith with a different porous structure served for the preconcentration of peptides from the digest and their separation in reversed-phase liquid chromatography mode. The top of the separation capillary was used as a preconcentrator, thus enabling the digestion of very dilute solutions of proteins in the bioreactor and increasing the sensitivity of the mass spectrometric detection of the peptides using a time-of-flight mass spectrometer with electrospray ionization. Myoglobin, albumin, and hemoglobin were digested to demonstrate feasibility of the concept of using the two monoliths in-line. Successive protein injections confirmed both the repeatability of the results and the ability to reuse the bioreactor for at least 20 digestions.  相似文献   

11.
Chen YL 《Electrophoresis》2011,32(3-4):379-385
Capillary electrophoresis (CE) is the most useful tool for DNA separation because of its high resolution. In this study, different kinds of polymers were used to evaluate the separation efficiency by analyzing a 200-bp DNA ladder. Under optimized CE conditions, the CE separation was performed by DB-17 capillary. The running buffer was a 1× TBE buffer containing 0.6% w/v poly(ethylene oxide) (PEO) (Mw: 8,000,000) and 1?μM YO-PRO-1; applied voltage was -10?kV (detector at anode side) and the separation temperature was 25°C. Under these optimal conditions, 15 DNA fragments with sizes ranging from 0.2 to 3.0?kb were resolved within 11.5?min and the RSD of migration time were less than 0.55% (n=3). This method, combined with three-step multiplex PCR, was applied to detect five α-thalassemia deletions, including -α(3.7) , -α(4.2) , - -(SEA) , - -(FIL) and - -(THAI) . A total of 21 patients diagnosed with α-thalassemia were analyzed using this developed method and all results agreed with those already obtained by gel electrophoresis.  相似文献   

12.
This article presents an overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems that have been reported in the literature between January 2009 and July 2011. The present paper is an update of two previous review papers covering the years 2000-2009 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54). Both in-line and on-line SPE-CE approaches are treated and outlined. Attention is paid to emerging technological developments, such as the use of carbon nanotubes and magnetic particles for on-line extraction of sample components prior to CE analysis. Selected examples illustrate the applicability of SPE-CE in biomedical, pharmaceutical, environmental and food analysis. A full overview of recent SPE-CE studies is given in table format, providing information about sample type, SPE sorbent, coupling mode, detection mode and limit of detection. Finally, some general conclusions and future perspectives are given.  相似文献   

13.
A butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolith was synthesized by UV initiated polymerization at the inlet end of a 75 microm I.D. fused silica capillary that had been previously coated with a protein compatible polymer, poly(vinyl)alcohol. The monolith was used for on-line preconcentration of proteins followed by capillary electrophoresis (CE) separation. For the analysis of standard proteins (cytochrome c, lysozyme and trypsinogen A) this system proved reproducible. The run-to-run %RSD values for migration time and corrected peak area were less than 5%, which is typical of CE. As measured by frontal analysis using lysozyme as solute, saturation of a 1cm monolith was reached after loading 48 ng of protein. Finally, the BuMA-co-EDMA monolithic preconcentrator was coupled to a protein G monolithic column via a zero dead volume union. The coupled system was used for on-line removal of IgG, preconcentration of standard proteins and CE separation. This system could be a valuable sample preparation tool for the analysis of low abundance proteins in complex samples such as human serum, in which high abundance proteins, e.g., human serum albumin (HSA) and immunoglobulin G (IgG), hinder identification and quantification of low abundance proteins.  相似文献   

14.
A simple, efficient, and highly sensitive in-line CE method was developed for the characterization and for inhibition studies of the nucleoside-metabolizing enzymes purine nucleoside phosphorylase (PNP) and adenosine deaminase (ADA) present in membrane preparations of human 1539 melanoma cells. After filling the running buffer (50 mM borate buffer, 100 mM SDS, pH 9.10) into a fused-silica capillary (50 cm effective length × 75 μm), a large sample volume was loaded by hydrodynamic injection (5 psi, 36 s), followed by the removal of the large plug of sample matrix from the capillary using polarity switching (-20 kV). The current was monitored and the polarity was reversed when 95% of the current had been recovered. The separation of the neutral analytes (nucleosides and nucleobases) was performed by applying a voltage of 15 kV. An about 10-fold improvement of sensitivity for the five investigated analytes (adenosine, inosine, adenine, hypoxanthine, xanthine) was achieved by large-volume stacking with polarity switching when compared with CE without stacking. For inosine and adenine detection limits as low as 60 nM were achieved. To the best of our knowledge, this represents the highest sensitivity for nucleoside and nucleobase analysis using CE with UV detection reported so far. The Michaelis-Menten constants (K(m)) for PNP and ADA and the inhibition constants (K(i)) for standard inhibitors determined with the new method were consistent with literature data.  相似文献   

15.
The use of solid-phase extraction coupled on-line to capillary electrophoresis using electrospray mass spectrometry detection (SPE-CE-ESI-MS) is described for the analysis of peptides in dilute solutions. A SPE microcartridge or analyte concentrator containing C(18) derivatized silica particles as the extraction sorbent was easily constructed near the inlet of the separation capillary using commercially available materials. The reversed-phase sorbent selectively retained the target peptides, enabling large volumes of the sample to be introduced (>100muL). The captured analytes were eluted in a small volume of an appropriate solution (20-50nL). This resulted in sample clean-up and concentration enhancement, with minimum sample handling. As the SPE-CE conditions were compatible with on-line ESI-MS detection, the potential for identifying and characterizing the preconcentrated analytes by SPE-CE-ESI-MS using a sheath-flow CE-ESI-MS interface is also shown. Using separation electrolytes containing N-[carbamoylmethyl]-2-aminoethanesulfonic acid (ACES) at pH 7.4, an elution plug of 80:20 (v/v) (25mM of formic acid in MeCN):H(2)O and a sheath liquid of 20mM of acetic acid in 50:50 (v/v) methanol:H(2)O the concentration limits of detection for the analyzed peptides in the positive ion mode were lowered to nanogram per milliliter levels. The systematic optimization of the operational parameters involved in the development of the SPE-CE method is described in detail, in order to promote robust and quantitative SPE-CE-ESI-MS analysis and facilitate the widespread use of the technique.  相似文献   

16.
B F Liu  Q G Xie  Y T Lu 《Analytical sciences》2001,17(11):1253-1256
It was demonstrated that a capillary electrophoresis (CE) method with a non-gel sieving solution has been developed to identify the orientation of DNA fragments in recombinant plasmids in molecular biology. The influences of the concentration of sieving polymer HEC, the applied electric field strength and sampling on CE separation were analyzed concerning the optimization of separation. YO-PRO-1 was used as a DNA intercalating reagent to facilitate fluorescence detection. Under the chosen conditions (buffer, 1 x TBE containing 1 microM YO-PRO-1 and 1.2% HEC; applied electric field strength, 200 V/cm; electrokinetic sampling: time, 5 s; voltage, -6 kV), three DNA markers (phi 174/HaeIII, pBR322/HaeIII and lambda DNA/HindIII) were tested for further evaluating the relationship between the DNA size and the mobility. The established CE method conjugated with the enzymatic approach was successfully applied to identifying the DNA orientation of recombinant plasmid in transgene operations of a newly cloned gene from Arabidopsis Thaliana.  相似文献   

17.
Online preconcentration and separation of analytes using an in situ photopolymerized hexyl acrylate-based monolith stationary phase was evaluated using electrochromatography in capillary format and microchip. The band broadening occurring during the preconcentration process by frontal electrochromatography and during the desorption process by elution electrochromatography was studied. The hexyl acrylate-based monolith provides high retention for neutral analytes allowing the handling of large sample volumes and its structure allows rapid mass transfer, thus reducing the band broadening. For moderately polar analytes such as mono-chlorophenols that are slightly retained in water, it was shown that enrichment factors up to 3500 can be obtained by a hydrodynamic injection of several bed volumes for 120 min under 0.8 MPa with a decrease in efficiency of 50% and a decrease of 30% for the resolution between 2- and 3-chlorophenol. An 8 min preconcentration time allows enrichment factors above 100 for polyaromatic hydrocarbons. The interest of these monoliths when synthesized in microchip is also demonstrated. A 200-fold enrichment was easily obtained for PAHs with only 1 min as preconcentration time, without decrease in efficiency.  相似文献   

18.
建立了同时分离药用大黄提取液中大黄酸、芦荟大黄素、大黄素、大黄酚和大黄素甲醚5种蒽醌类活性成分的梯度加压毛细管电色谱的新方法.实验结果显示,大黄提取液中的5种蒽醌化合物可在22min内完全分离,梯度洗脱微柱液相色谱的柱效为等度洗脱微柱液相色谱的6.63倍,梯度毛细管电色谱的柱效为梯度微柱液相色谱的4.6倍.  相似文献   

19.
Polymeric ion-exchange monoliths typically exhibit low capacities due to the limited surface area on the globules of the monoliths. The ion-exchange binding of protonated weakly basic analytes on deprotonated carboxylate sites on methacrylate polymer monoliths has been increased by templating the monoliths with silica nanoparticles. The templating method is achieved by adding the nanoparticles as a suspension to the polymerisation mixture. After polymerisation, the nanoparticles are removed by washing the monolith with strong base. Monolithic columns prepared using this procedure have exhibited a 33-fold increase in ion-exchange capacity when compared to untemplated monoliths prepared and treated under similar conditions. The templating procedure does not alter the macroporous properties of the polymer monolith, confirmed through scanning electron microscopy and BET surface area analysis, but provides increased capacity predominantly through the re-orientation of more carboxylic acid groups. The resulting increase in ion-exchange capacity has proven to be useful for the preconcentration and separation of neurotransmitters by in-line solid-phase extraction–capillary electrophoresis. The increased capacity of the templated monolith allowed the injection time to be increased 10 times over that of an untemplated monolith, allowing 10 times more sample to be injected with the efficiencies and recoveries remaining unaffected. The enhancement in sensitivity for the test mixture of neurotransmitter (dopamine, norepinephrine and metanephrine) ranged 1500–1900 compared to a normal hydrodynamic injection in capillary electrophoresis. Efficiencies obtained for the neurotransmitters were 100 000–260 000 plates, typical of those obtained in capillary zone electrophoresis. The applicability of the increased capacity silica nano-templated polymer monolith was demonstrated by analysing trace levels of caffeine in biological, food and environmental samples.  相似文献   

20.
A method has been developed for determination of vanadium, as an anionic ternary complex of vanadium(V) with 4-(2-pyridylazo) resorcinol (PAR) and hydrogen peroxide, after separation by capillary electrophoresis (CE). The optimum conditions for the formation of the ternary complex were acetate buffer (3 mmol L(-1)) at pH 6 containing 0.15 mmol L(-1) PAR and 7.1 mmol L(-1) H(2)O(2). The CE separation was conducted using 15 mmol L(-1) acetate buffer at pH 6 as the background electrolyte; the separation potential was -30 kV and the injection time 100 s. The vanadium complex was detected photometrically at 568 nm, by use of a light-emitting diode (LED); the detection limit was 19 ppb. The method was applied to the analysis of vanadium in fertilisers. Clean-up of the digested fertiliser sample, with Sep-Pak C(18) coated with tetrabutylammonium hydroxide, before analysis was used to remove matrix ions which otherwise caused electrophoretic de-stacking. Vanadium levels found in the fertiliser samples by use of the CE method were found to be comparable with results obtained by HPLC and ICP-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号