首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Lanthanum oxide (La2O3) is of great interest as catalyst material. When La2O3 particles are prepared from lanthanum hydroxide (La(OH)3) by thermal processes under air, various oxycarbonate phases are formed which are resistant to thermal hydroxylation. This phenomenon has not yet been extensively investigated, even though oxycarbonate phases at the particle surfaces cause a change in lanthanum oxide??s catalytic activity. The carbonate phases formed cannot be detected by means of XRD or REM-EDX investigations due to their detection limits. Thermal analysis, particularly TG-FT-IR, allows not only for the detection of the carbonate phases in La(OH)3, but also for the tracking of the entire dehydration process from La(OH)3 via LaOOH to La2O3 as well as the correct interpretation of mass changes during the thermal transformations. Pursuant to the investigations here carried out, it was determined that carbonate-free lanthanum hydroxide compounds can only be prepared and stored in a CO2-free protective gas atmosphere (e.g., argon).  相似文献   

2.
A standard protocol was developed to determine the water content by thermal analysis of milk of magnesia (MoM). Differential scanning calorimetry (DSC) and thermogravimetry (TG) were used in a novel manner for examining the physical characteristics of the commercial pharmaceutical suspensions. Moisture analyzer and oven-dry methods validate the proposed protocol. MoM consists primarily of water and magnesium hydroxide [Mg(OH)2]. Experimental design of the thermal analysis parameters were considered including sample size, flowing atmosphere, sample pan, and heating rate for both DSC and TG. The results established the optimum conditions for minimizing heat and mass transfer effect. Sample sizes used were: (5?C15?mg) for DSC and (30?C50?mg) for TG. DSC analysis used crimped crucibles with a pinhole, which allowed maximum resolution and gave well-defined mass (water) loss. TG analysis used a heating rate of 10?°C/min?1 in an atmosphere of nitrogen. The heat of crystallization, heat of fusion, and heat of vaporization of unbound water are 334, 334, and 2,257?Jg?1, respectively (Mitra et al. Proc NATAS Annu Conf Therm Anal Appl 30:203?C208, 2002). The DSC average water content of (MoM) was 80?wt% for name brand and 89.5?wt% for generic brand, based on the relative crystallization, melting and vaporization heats/Jg?1 of distilled water in the recently purchased (2011) MoM samples. The TG showed a two-step process, losing water at 80?C135?°C for unbound water and bound water (MgO·H2O) at 376?C404?°C, yielding a total average water loss of 91.9?% for name brand and 90.7?% for generic brand by mass. The difference between the high-temperature TG and the lower-temperature DSC can be attributed for the decomposition of magnesium hydroxide or MgO·H2O. Therefore in performing this new approach to water analysis by heating to a high temperature decomposed the magnesium hydroxide residue. It was determined that the TG method was the most accurate for determining bound and unbound water.  相似文献   

3.
4.
Klein DH  Smith MD  Driy JA 《Talanta》1967,14(8):937-940
The rate of homogeneous nucleation of magnesium hydroxide has been determined as a function of solution concentration, using a quasi-homogeneous precipitation technique and electronic particle counting. The nucleation rate becomes measurable at super-saturations of about 4, and is dependent on the 33rd power of the product aMgaOH(2). The experimental results are consistent with nucleation theory. The nucleus-solution interfacial energy is calculated to be 115 erg/cm(2).  相似文献   

5.
The synthesis of lamellar mesostructured Mg(OH)2 was achieved through a surfactant templating route. Amphiphilic compounds with different anionic headgroups (phosphate, sulfate, sulfonate, and carboxylate) were used as surfactants. Control of d spacing was achieved through the use of different alkyl carboxylate amphiphiles. It is proposed that the interaction between the highly reactive oxygen atoms of the anionic surfactants and the highly electrophilic Mg atom leads to the formation of high charge density at the interface between the surfactant molecules and the inorganic precursor. This interaction is very strong and the existence of strong bonds between the headgroup molecules of the surfactant and the Mg atom locks the structure in a preferred orientation, i.e., lamellar mesostructure. The strong interaction thus precludes any phase transformation, and only the lamellar phase of Mg(OH)2 is obtained. Calcination of the surfactant by heating in oxygen flow leads to the collapse of the lamellar mesophase and results in the formation of nonporous MgO.  相似文献   

6.
7.
Elçi L  Saraçoğlu S 《Talanta》1998,46(6):1305-1310
A magnesium hydroxide coprecipitation technique for determination of Cd, Co, Cu, Mn, Ni in dialysis concentrate is described. The analytes are concentrated from 10 ml of dialysis concentrate into 1 ml of 1 M HNO3 and subsequently determined by graphite furnace atomic absorption spectrometry. Coprecipitation parameters and matrix effects are discussed. The precision, based on replicate analysis, is around 5% for the analytes, and recovery is quantitative, based on analysis of spiked samples and solutions including matrix components.  相似文献   

8.
In the present study, the kinetics of the thermal decomposition of magnesium hydroxide is investigated, using isothermal methods of kinetic analysis. For this purpose, experiments in thermogravimetric analyser were carried out in standard values of temperature (350°, 400°, 450° and 500°C) which resulted in weight loss percent as a function of time. The data were further modified to give fraction reacted ‘' versus time to be tested in various forms of ‘' functions. In order to determine the mechanism of the magnesium hydroxide decomposition and the form of the conversion function which governs the dehydroxylation of Mg(OH)2, four different methods of isothermal kinetic analysis were used. Applying each of these methods to the data, it was concluded that the nucleation mechanism predominates the Mg(OH)2, decomposition for all values of temperature tested; at 350°C the kinetic model which represents the experimental data is that of reaction at phase boundaries (random nucleation), F1: ln(1−)=kt) while for the higher temperatures 400°, 450° and 500°C the kinetic equation of nucleation and development in two dimensions, A2: [−ln (1−)]1/2=kt was found to fit better the experimental results. The activation energy was evaluated applying two alternative methods; the Arrhenius plot, using maximum rates of reaction, from which the activation energy was evaluated to be 20.54 kcal/mol. An alternative method based on plots of ln t versus 1/T corresponding to the same value of ‘' gave values of 10.72, 13.82 and 16.31 kcal/mol for ‘' values of 0.25, 0.50 and 0.75, respectively.  相似文献   

9.
《Thermochimica Acta》1979,34(2):211-220
The thermal decomposition of zirconium hydroxides prepared from aqueous ammonium hydroxide solutions on the addition of potassium fluorozirconate, K2ZrF6, under various conditions has been examined by thermogravimetry, differential thermal analysis, X-ray diffraction study and infrared spectrophotometry. As a result, it is found that the thermal decomposition of zirconium hydroxide proceeds according to
In this process, the transformation of amorphous ZrO2 to either the metastable tetragonal or monoclinic form depends on the composition of the original starting material as an hydrated oxyhydroxide, ZrO2−x (OH)2x · y H2O where x ⩽ 2 and y ⋍ 1.  相似文献   

10.
The thermal behaviour of strontium hydroxide octahydrate was studied by thermal analysis, an X-ray diffraction technique and optical microscopy. Up to 210° this compound transforms to the hexahydrate and then to the monohydrate. Anhydrous strontium hydroxide crystallizes in the tetragonal system and a polymorphous transformation may occur at 480°. From 530° on it decomposes in three stages. Amorphous strontium oxide is obtained at 700°.
Zusammenfassung Das thermische Verhalten von Strontiumhydroxyd-Oktahydrat wurde röntgendiffraktometrisch, thermoanalytisch und durch optische Mikroskopie untersucht. Die Verbindung geht bis 210° in das Hex- und daraufhin ins Monohydrat über. Die Anhydroverbindung kristallisiert tetragonal. Bei 480° erfolgt eine polymorphe Umwandlung. Über 530° verläuft eine Dehydroxylation in drei Stufen. Amorphes Strontiumoxyd wurde bei 700° erhalten.

Résumé On a étudié le comportement thermique de l'hydroxyde de strontium octohydraté par analyse thermique, diffraction de rayons X et examen microscopique. Ce composé donne l'hexahydrate jusqu'à 210° puis le monohydrate. L'hydroxyde de strontium anhydre cristallise dans le système tétragonal et présente une transformation polymorphique à 480°. La déshydroxylation commence à 530° et s'effectue en 3 étapes. L'oxyde de strontium amorphe s'obtient à 700°.

, . 210° , . 480°. 530° . 700°.
  相似文献   

11.
The combination of organophillised montmorillonite (MMT), synthetic hydromagnesite and aluminium hydroxide (ATH) as flame retardant system for polyethylene-based materials was studied and compared with a similar system with magnesium hydroxide, ATH and MMT. The thermal stability and the flame retardant properties were evaluated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), limiting oxygen index (LOI) and cone calorimeter tests. The results indicated that the addition of montmorillonite makes it possible to reduce the total filler content to achieve the flame retardant requirements. The thermal stability of filled LDPE/EVA blends increases to a higher extent for the samples containing MMT. In the cone calorimeter tests we observed a reduction of the peak heat release rate for the sample containing montmorillonite in comparison with a sample with higher filler loading without this nanoclay. An increase of the stability of the char formed could be responsible for this favourable behaviour when montmorillonite is added.In addition, mechanical properties significantly improved for the composites containing montmorillonite both for the filler loading reduction and the reinforcement effect of the nanoclay.  相似文献   

12.
Magnesium aluminum hydroxide, the most important member of layered double hydroxides, was peptized by intense washing. The particle diameter, 70–130 nm, depended on the temperature of aging the parent material. The electrophoretic mobility of the particles decreased with increasing pH, from 3.7 × 10−8 m2/Vs at pH 5 to 0.5 × 10−8 m2/Vs at pH 12.3. An isoelectric point at pH∼7 was reached with the addition of 87 mmol/l NaSCN, 3 mmol/l Na2SO4 and Na2CO3, and 0.7 mmol/l Na2HPO4. The critical coagulation concentration for the 2% (w/w) dispersion was 88 mmol/l NaCl, 1.8 mmol/l Na2CO3, 1.4 mmol/l Na2SO4, and 1.2 mmol/l Na2HPO4 at pH∼7. The 2% dispersion at pH∼7 showed an almost Newtonian flow behavior. Yield values were developed after salt addition. The 2% dispersion reached a yield value of 2 Pa at 100 mmol/l NaCl, 3 Pa at 100 mmol/l Na2SO4, and 5 Pa at 100 mmol/l Na2CO3. Sodium phosphate in comparison with the other salts showed a liquefying effect. The yield value increased to 3 Pa at 1–10 mmol/l Na2HPO4 and decreased to 0.5 Pa at 100 mmol/l Na2HPO4. Received: 28 February 2001 Accepted: 8 March 2001  相似文献   

13.
Nucleation of Mg(OH)2 was investigated by measuring the electrical conductivity and pH of the Mg(NO3)2 reaction solution to which ammonia containing different amounts of NH4NO3 was added. NH4NO3 increases solubility and slows down precipitation of Mg(OH)2 in the system. Data are presented on the influence of NH4NO3 on the solubility of Mg(OH)2 at 25°C. The phenomena observed can be explained by the solvation effect of nitrate ions brought to the system with the addition of ammonium nitrate, which was proved by NMR spectroscopy. When the mass fraction of NH4NO3 exceeds 15 %, homogeneous nucleation does not proceed. It was found that seeding of the system with Mg(OH)2 crystals only influenced the rate of Mg(OH)2 crystallisation, not the size and shape of the crystals. Primary crystals are smaller than 0.1 μm. The large difference in the surface energy of individual crystal planes leads to oriented agglomeration. This process is accelerated in a pressure reactor at 130°C. The resulting polycrystals are hexagonal plates 0.2 μm thin with a diameter of 1–2 μm. Under variable reaction conditions, agglomerates as big as 30 μm can be prepared.  相似文献   

14.
Journal of Thermal Analysis and Calorimetry - The thermal decomposition of finely divided Mg(OH)2 does not occur smoothly. Several maxima of the gas evolution rate are observed, when microgram...  相似文献   

15.
The IR spectra of polycrystalline Mg(OH)2 and Mg(OD)2 are reported in the 4000–40 cm−1 region. Band assignments were discussed on the basis of isotopic band shifts of the fundamental vibrations by combining the results of factor group analysis for D3d3 crystal structure with the Teller–Redlich product rule for crystal vibrations. The band assignments proposed are different from the previous IR spectroscopic studies.  相似文献   

16.
Thermal decomposition of zinc carbonate hydroxide   总被引:3,自引:0,他引:3  
This study is devoted to the thermal decomposition of two zinc carbonate hydroxide samples up to 400 °C. Thermogravimetric analysis (TGA), boat experiments and differential scanning calorimetry (DSC) measurements were used to follow the decomposition reactions. The initial samples and the solid decomposition products were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and laser particle size analyzer. Results showed that zinc carbonate hydroxide decomposition started at about 150 °C and the rate of decomposition became significant at temperatures higher than 200 °C. The apparent activation energies (Ea) in the temperature range 150–240 °C for these two samples were 132 and 153 kJ/mol. The XRD analyses of the intermediately decomposed samples and the DSC results up to 400 °C suggested a single-step decomposition of zinc carbonate hydroxide to zinc oxide with not much change in their overall morphologies.  相似文献   

17.
In this paper, the formation of magnesium oxychloride (Mgx(OH)yClz·nH2O) nanorods from the system MgO-MgCl2-H2O is investigated thoroughly. By systematically changing the adding amounts of the three starting materials, short nanorods (<1 μ) or long nanorods (up to 20 μ) were obtained readily with the aspect ratio in the range of 10–70. The mechanism of the crystal growth and the change of the crystal phase from 5Mg(OH)2·MgCl2·8H2O (phase 5) to 3Mg(OH)2·MgCl2·8H2O (phase 3) is also discussed. The products were characterized by transmission electron microscopy X-ray diffraction, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The resulting magnesium oxychloride nanorods were further transformed to magnesium hydroxide (Mg(OH)2) nanorods with the shape remained by treating with NaOH at room temperature. The results shown in this paper indicate a facile pathway to produce magnesium oxychloride or magnesium hydroxide nanorods with controllable morphology on large scale.  相似文献   

18.
氢氧化镁分解动力学的研究   总被引:1,自引:0,他引:1  
以硼泥为原料与硫酸反应制备出七水硫酸镁,以氢氧化钠为沉淀剂制备出符合标准HG/T 3607-2000的氢氧化镁.利用XRD,SEM和TEM对氢氧化镁进行了表征,DTA-TG对氢氧化镁的热分解动力学进行了研究.XRD结果表明:制备粉体为单一Mg(OH)2.SEM和TEM结果表明:样品为片状或针状纤维,片直径大小不一,在20~50 nm之间,针状纤维形状不规则,大小不一致,长度在20~100 nm之间.利用Kissinger法和Ozawa法计算出的氢氧化镁热分解反应活化能分别为135.14和141.61 kJ·mol-1.利用Coats-Redfern法和Dolye法判断氢氧化镁热分解反应机理函数为A1.5.  相似文献   

19.
以硫酸镁和氢氧化钠为原料,油酸为表面修饰剂,采用原位合成的方法制备出了疏水性的Mg(OH2)纳米片.研究了反应温度、反应物浓度等因素对氢氧化镁纳米片平均粒径的影响.用X-射线粉末衍射(XRD)、红外(IR)和热重(DTA-TGA)及扫描电子显微镜(SEM),对制备出的Mg(OH)2纳米片的结构和形貌进行了表征,证实制备出的Mg(OH)2纳米片具有良好分散性,纳米片尺度为200~300nm,厚度10nm.摩擦实验证明Mg(OH2)纳米片可以作为润滑油中的添加剂来应用.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号