首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
摩擦偶件对单晶硅宏观摩擦磨损行为的影响   总被引:2,自引:1,他引:1  
研究了单晶硅分别与Si3N4、红宝石及GCr15钢对摩时的摩擦磨损性能.结果表明:单晶硅与不同偶件对摩时的摩擦系数均随着滑动速度的提高而降低;在相同试验条件下,单晶硅与GCr15钢对摩时的摩擦系数最高,这主要是由于单晶硅与GCr15钢中的过渡金属元素Fe具有很强的化学亲合势所致;而单晶硅与红宝石对摩时的磨损体积损失最大,与GCr15钢对摩时的磨损体积损失最小;低速下Si3N4和红宝石陶瓷偶件与单晶硅对摩时磨损表面存在大量的微断裂,随着滑动速度的增加其磨损表面逐渐变得较为光滑;GCr15钢与单晶硅对摩初期向单晶硅表面转移,在随后的摩擦过程中转移层因磨损而被去除,故单晶硅/GCr15钢磨损表面比其他2种摩擦副的磨损表面光滑.  相似文献   

2.
溶胶-凝胶法制备的ZrO_2薄膜的摩擦学性能研究   总被引:1,自引:0,他引:1  
在 Si(10 0 )基片上制备晶态 Zr O2 薄膜 ,考察了薄膜的摩擦学性能和摩擦磨损机制 .结果表明 :在低负荷 (0 .5 N )下 ,Zr O2 薄膜与 GCr15钢球和 Si3N4陶瓷球对摩时具有优良的抗磨减摩性能 ,在滑动 5 0 0 0次时的摩擦系数分别为0 .14和 0 .13;但随着负荷和滑动速度的增大 ,薄膜的耐磨寿命降低 ,摩擦系数增大 .采用扫描电子显微镜对薄膜磨痕表面形貌进行观察分析 ,发现在较低负荷和滑动速度条件下 ,Zr O2 薄膜的磨损机制为轻微擦伤 ;而在相对较高的负荷和滑动速度条件下 ,其磨痕表面呈现塑性变形 ,严重擦伤和断裂剥落特征  相似文献   

3.
研究了分别在十五烷、无水乙醇和蒸馏水润滑下单晶硅的摩擦磨损行为及其相变和脆塑行为.结果表明:在十五烷润滑下单晶硅的摩擦系数和磨损体积损失最低,而在蒸馏水润滑下的摩擦系数和磨损体积损失最大;单晶硅在非极性溶剂十五烷润滑下发生明显的Si-I→a-Si相变,磨损表面光滑并呈现明显的金属塑性特征;单晶硅在无水乙醇润滑下发生轻度Si-I→a-Si相变,磨损表面特征为微弱的塑性变形和微断裂共存;在蒸馏水润滑下,单晶硅发生轻度的Si-I→Si-III相变,磨损表面变得粗糙并伴有大量微断裂;润滑介质的极性是影响单晶硅磨损表面相变和脆塑行为的主要因素之一.  相似文献   

4.
溶胶—凝胶法制备的ZrO2薄膜的摩擦学性能研究   总被引:7,自引:3,他引:4  
在Si(100)基片上制备晶态ZrO2薄膜,考察了薄膜的摩擦学性能和摩擦磨损机制。结果表明:在低负荷(0.5N)下,ZrO2薄膜与GCr15钢球和Si3N4陶瓷球对摩时具有优良的抗磨减摩性能,在滑动5000次时的摩擦系数分别为0.14和0.13;但随着负荷和滑动速度的增大,薄膜的耐磨寿命降低,摩擦系数增大。采用扫描电子显微镜对薄膜磨痕表面形貌进行观察分析,发现在较低负荷和滑动速度条件下,ZrO2薄膜的磨损机制为轻微擦伤;而在相对较高的负荷和滑动速度条件下,其磨痕表面呈现塑性变形,严重擦伤和断裂剥落特征。  相似文献   

5.
采用往复式摩擦磨损试验机研究了10%(质量分数计)Al2O3增强四方氧化锆多晶Y-TZP陶瓷材料(简称10ADZ)在不同载荷下的磨损行为与机制.结果表明:随着载荷的增加和滑动时间的延长,10ADZ陶瓷的磨损率增大,但并非呈线性增加,磨损率增长幅度不同;在62 N低载荷条件下,10ADZ陶瓷的磨损机制以犁沟和塑性变形为主;在124 N载荷下其主要的磨损形式为塑性变形、微切削和微断裂;而在310 N的高载荷下其主要的磨损机制为断裂磨损.  相似文献   

6.
碳黑填充超高分子量聚乙烯复合材料摩擦磨损性能研究   总被引:7,自引:5,他引:7  
采用MM-200型摩擦磨损试验机考察了载荷及偶件表面粗糙度对碳黑填充超高分子量聚乙烯(UHMWPE)复合材料摩擦磨损性能的影响;利用扫描电子显微镜观察复合材料磨损表面形貌并分析了其磨损机理.结果表明:同UHMWPE相比,碳黑填充UHMWPE的磨损质量损失随载荷增加而增大的幅度较小;偶件表面粗糙度对碳黑填充UHMWPE复合材料的摩擦磨损性能影响较大,随着偶件表面粗糙度的增大,摩擦系数和复合材料的磨损质量损失均显著增大.UHMWPE及其碳黑填充复合材料在干摩擦条件下同45“钢及SiC喷涂层涂覆45“钢对摩时主要呈现犁削和塑性变形特征,犁削和塑性变形程度随载荷和偶件表面粗糙度增加而加剧。  相似文献   

7.
以Mo、Ni和Si金属粉末为原料,利用激光熔化沉积技术制备Mo基固溶体(Moss)增韧Mo2Ni3Si金属硅化物耐磨材料,在销-盘式摩擦磨损试验机上评价合金在400~550 ℃范围内的磨损性能,借助扫描电子显微镜观察合金磨损表面及其亚表面形貌.结果表明,Moss增韧Mo2Ni3Si金属硅化物合金在高温滑动条件下表现出反常的磨损率-温度关系,即磨损率随温度的升高而降低,其磨损表面光滑平整,没有显微切削和犁沟等特征,Moss树枝晶在试验温度下发生了轻微氧化.金属硅化物Mo2Ni3Si在磨损过程中起到了抗磨作用,韧性良好的Moss树枝晶有效地抑制了Mo2Ni3Si基体的裂纹扩展和显微剥落.合金在高温滑动条件下的主要磨损机理为软磨粒磨损和Moss相的轻微氧化.  相似文献   

8.
TZP陶瓷在干摩条件下的磨损机制转变图   总被引:4,自引:4,他引:4  
研究了四方氧化锆陶瓷/GCr15钢摩擦副在往复运动于干摩擦条件下的摩擦学特性,并通过对磨损表面及断面的显微分析,建立了这种陶瓷在此状态下的磨损机制转变图。四方氧化锆陶瓷在轻微磨损条件下的磨损机制是塑性变形和微断裂,但其在比较严重的磨损条件下的主要磨损机制是表面断裂和磨粒磨损;在高速高载下,四方氧化锆陶瓷表面由于形成了,连续的偶件钢材料的转移膜而发生负磨损。试验过程中,GCr15钢球主要发生的是塑性  相似文献   

9.
20CrNiMo钢在冲击滑动耦合作用下的磨损特性研究   总被引:1,自引:1,他引:0  
采用L16(45)四水平正交表设计试验,利用自行研制的冲击滑动磨损试验装置研究20CrNiMo钢在冲击滑动耦合作用下的磨损特性,运用极差分析及多元线性回归处理试验数据,得到20CrNiMo钢在冲击滑动耦合作用下的平均磨损质量损失与各试验因素(冲击频率、冲击力和滑动速度)的回归方程,并通过扫描电子显微镜观察分析磨痕表面形貌.结果表明:试验因素对20CrNiMo钢平均磨损量的影响程度由大到小依次为冲击力冲击频率滑动速度;平均磨损质量损失随冲击力和冲击频率的增加而增大;20CrNiMo钢在冲击滑动耦合作用下的磨痕表面呈现片状剥落迹象,随着冲击力及冲击频率的增加,片状剥落趋向严重;磨损表层组织在冲击滑动耦合作用下发生较严重的塑性变形而从磨痕边缘挤出、剥落,导致材料流失.20CrNiMo钢在冲击滑动耦合作用下的磨损机制为剥层磨损.  相似文献   

10.
将3Y-TZP陶瓷置于常压、100℃沸水下低温老化处理0~100h,在120N载荷、0.42m/s滑行速度和蒸馏水润滑条件下对老化处理后的陶瓷进行摩擦磨损试验.结果表明:随着老化时间的延长,3Y-TZP陶瓷的硬度和抗弯强度呈下降趋势,摩擦系数经历了1个先降后升的阶段,磨损率随老化时间的延长而逐渐增大.未经老化时,3Y-TZP陶瓷的主要磨损机理为犁沟和塑性变形;50h老化后陶瓷磨损表面主要为塑性变形和微断裂;经过75h老化处理后,陶瓷的磨损率已上升到严重磨损阶段,磨损机理发生了转变;老化进行100h后,3Y-TZP陶瓷的主要磨损机理为断裂磨损.  相似文献   

11.
牙用亚微米氧化锆增韧氧化铝陶瓷的摩擦磨损性能研究   总被引:3,自引:0,他引:3  
考察了亚微米氧化锆增韧氧化铝陶瓷(Z2S)在人工唾液润滑下的摩擦磨损行为,并与目前口腔临床常用烤瓷材料Vita陶瓷和Dentsply陶瓷进行对比.结果表明:与Si3N4陶瓷配副时,Z2S的摩擦磨损性能优于Vita陶瓷和Dentsply陶瓷,其磨损率比Vita陶瓷和Dentsply陶瓷的磨损率低2个数量级,Z2S的主要磨损机制为轻微的磨粒磨损和塑性变形,并受ZrO2的摩擦诱导相变影响;与天然牙釉质配副时,Z2S不仅自身磨损低而且对天然牙釉质的磨损较小,天然牙釉质的磨损表面保持了较好的初始形态,其与天然牙釉质的配对性优于Dentsply陶瓷与天然牙釉质的配对性,是1种具有潜在应用前景的牙科修复材料.  相似文献   

12.
SUS 304奥氏体不锈钢的摩擦变形层研究   总被引:1,自引:0,他引:1  
研究了SUS 304奥氏体不锈钢与Al2O3陶瓷球以及GCr15轴承钢球对摩的摩擦特性,利用X射线衍射仪、金相显微镜和显微硬度计研究了SUS 304奥氏体不锈钢磨痕表层及其次表层硬度、磨痕表面的马氏体转变与试验条件的关系.结果表明:当载荷大于30 N后,摩擦系数在剧烈波动前存在1个与试验时间或滑动距离相关的孕育期;SUS 304奥氏体不锈钢磨痕表层的显微硬度从次表层至表层呈上升趋势;在相同滑动速度下,随着载荷增加,磨痕表层的显微硬度增大;摩擦诱发了亚稳奥氏体向马氏体转变,且磨痕表层诱发转变的马氏体含量随载荷和滑动速度的增加而降低;在载荷和摩擦剪切应力作用下,由于表层晶粒细化、相变马氏体和高密度位错的综合作用使得其显微硬度增大.  相似文献   

13.
往复滑动干摩擦条件下碳烟颗粒的摩擦学特性研究   总被引:3,自引:3,他引:0  
采用往复摩擦磨损试验机分别研究了生物质燃油碳烟颗粒和0#柴油碳烟颗粒对滑动干摩擦条件下铸铁/铸铁摩擦副摩擦磨损行为的影响;借助扫描电镜、原子力显微镜和拉曼光谱仪等分析测试设备探讨了不同碳烟颗粒的摩擦学作用机理.结果表明:引入碳烟颗粒后,铸铁摩擦副的摩擦磨损明显减轻,摩擦系数和磨损量均随往复频率的增加而增大;且生物质燃油碳烟颗粒的抗磨减摩效果优于柴油碳烟颗粒.其原因归于碳烟颗粒自身的力学特性、自润滑性以及摩擦副表面特性,主要包括含碳烟颗粒摩擦表面膜的形成、摩擦诱导铁基氧化物的生成,以及摩擦表面有序化碳含量的增加.  相似文献   

14.
碳化硼-碳化硼摩擦副的摩擦磨损特性研究   总被引:6,自引:2,他引:4  
考察了热压碳化硼-碳化硼摩擦副在室温下的摩擦磨损特性,并采用X射线衍射仪测定了磨损表面的物相组成。结果表明:碳化硼-碳化硼摩擦副的摩擦系数随滑行距离和载荷的增加而减小,最低摩擦系数为0.09;在低载荷下初始阶段摩擦系数较高(0.3~0.4),磨损率极低,无法用表面轮廓仪测得,磨损表面X射线衍射分析表明,在摩擦过程中接触表面发生了摩擦化学反应,生成了B2O3和H3BO3等物质,从而使摩擦系数降低。  相似文献   

15.
车建明 《摩擦学学报》2004,24(2):144-147
考察了炭纤维增强铜基复合材料的摩擦磨损性能,利用扫描电子显微镜、电子探针X射线显微分析仪和表面轮廓测试仪等观察分析了复合材料磨损表面形貌和元素组成.结果表明,复合材料摩擦磨损性能及其磨损表面形貌与粗糙度同载荷及滑动速度密切相关,当载荷和速度小于某一临界值时,复合材料同钢对摩时的摩擦系数和磨损率均较小,而当载荷和速度超过临界值时,复合材料的摩擦系数和磨损率均大幅增大,复合材料磨损表面形成了由C、Cu和Fe等元素组成的固体润滑和防护薄膜,使得其在干摩擦条件下同钢对摩时的摩擦系数和磨损率均较低.  相似文献   

16.
采用半干法制备碳纤维织物增强环氧树脂基自润滑复合材料,研究钢背衬复合材料与45钢在环-环端面浸油润滑状态下的摩擦学特性,考查载荷、速度和碳织物类型对复合材料摩擦磨损性能的影响,并采用扫描电子显微镜对复合材料及偶件磨损表面进行观察与分析.结果表明:轻载高速启动可显著提高单向碳织物/环氧复合材料的摩擦磨损性能,边界润滑状态下的碳织物/环氧复合材料主要表现出黏着磨损特性,对偶钢环上出现的网状转移膜大大改善了材料的摩擦学性能;平纹碳织物/环氧复合材料因表面织物纹理使得润滑油能深入到摩擦表面各区域,在重载下表现出较低的摩擦系数.  相似文献   

17.
几种铝锡硅铜合金的摩擦磨损特性   总被引:3,自引:2,他引:3  
采用环-块摩擦磨损试验机,考察了含Si质量分数为1%~5%的Al-20Sn-Si-1Cu合金及传统的Al-20Sn-1Cu合金的摩擦磨损性能.结果表明:几种Al-20Sn-Si-1Cu合金的磨损率低于Al-20Sn-1Cu合金的磨损率,并且随Si含量的增加而降低.干摩擦时,摩擦因数随Si含量的增加无明显变化;油润滑时摩擦因数则随Si含量的增加而略微减小.两类合金的摩擦因数均随滑动速度的增加而减小,随摩擦时间的增加先增加后减小并趋于稳定.磨损表面的SEM分析表明:Al-20Sn-Si-1Cu合金在干摩擦下的磨损机制主要是磨粒磨损和氧化磨损,而Al-20Sn-1Cu合金则包括粘着、疲劳及磨粒磨损等多种形式.在油润滑下,两者的磨损机理则分别为犁削作用和疲劳磨损及分层磨损.  相似文献   

18.
表面粗糙度对UHMWPE微动摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
采用SRV-4微动摩擦磨损试验机,研究了在干摩擦和水润滑条件下,表面粗糙度对UHMWPE微动摩擦磨损性能的影响.结果表明:干摩擦时,随着UHMWPE表面粗糙度的增加,摩擦系数先降低后升高,比磨损率则单调递增.利用光学显微镜和扫描电子显微镜对磨损表面形貌进行分析观测,发现干摩擦时表面粗糙度较小的UHMWPE磨损表面有少量犁沟,并伴随轻微的塑性变形,随着表面粗糙度的增加,摩擦副接触表面间的黏合点增多,黏着磨损加剧,且在对偶钢球的表面形成转移膜.而在水润滑条件下,摩擦系数和比磨损率显著降低,随着表面粗糙度的增加,摩擦系数和比磨损率同干摩擦时的变化趋势一致,磨损以磨粒磨损为主.  相似文献   

19.
在往复滑动摩擦磨损试验台上对比考察了人牙釉质自配副及其同钛合金和纯钛配副时的摩擦学性能.结果表明:牙釉质/牙釉质的稳态摩擦系数约为1.00,其磨损表面釉柱清晰可见,磨损机制表现为剥落和轻微犁削并存;牙釉质/钛合金的稳态摩擦系数约为0.92,磨损表面既有犁沟又有剥落,可以看到轮廓分明的釉柱;牙釉质/纯钛的稳态摩擦系数约为0.87,磨损表面存在纯钛转移膜.从摩擦系数的变化趋势、稳态摩擦系数的大小、磨损表面形貌和磨痕深度等角度来看,牙釉质/钛合金与牙釉质/牙釉质的摩擦磨损行为较为相似.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号