首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reduction of the five-coordinate iron(II) dihalide complexes (iPrPDI)FeX2 (iPrPDI = ((2,6-CHMe2)2C6H3N=CMe)2C5H3N; X = Cl, Br) with sodium amalgam under 1 atm of dinitrogen afforded the square pyramidal, high spin iron(0) bis(dinitrogen) complex (iPrPDI)Fe(N2)2. In solution, (iPrPDI)Fe(N2)2 loses 1 equiv of N2 to afford the mono(dinitrogen) adduct (iPrPDI)Fe(N2). Both dinitrogen compounds serve as effective precatalysts for the hydrogenation and hydrosilation of olefins and alkynes. Effecient catalytic reactions are observed with low catalyst loadings (< or = 0.3 mol %) at ambient temperature in nonpolar media. The catalytic hydrosilations are selective in forming the anti-Markovnikov product. Structural characterization of a high spin iron(0) alkyne and a bis(silane) sigma-complex has also been accomplished and in combination with isotopic labeling studies provides insight into the mechanism of both catalytic C-H and catalytic C-Si bond formation.  相似文献   

2.
The bis(imino)pyridine iron dinitrogen compounds, ((iPr)PDI)Fe(N(2))(2) and [((Me)PDI)Fe(N(2))](2)(μ(2)-N(2)) ((R)PDI = 2,6-(2,6-R(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = (i)Pr, Me), promote the catalytic intermolecular [2π + 2π] cycloaddition of ethylene and butadiene to form vinylcyclobutane. Stoichiometric experiments resulted in isolation of a catalytically competent iron metallocycle intermediate, which was shown to undergo diene-induced C-C reductive elimination. Deuterium labeling experiments establish competitive cyclometalation of the bis(imino)pyridine aryl substituents during catalytic turnover.  相似文献   

3.
The oxidation and reduction of a redox-active aryl-substituted bis(imino)pyridine iron dicarbonyl has been explored to determine whether electron-transfer events are ligand- or metal-based or a combination of both. A series of bis(imino)pyridine iron dicarbonyl compounds, [((iPr)PDI)Fe(CO)(2)](-), ((iPr)PDI)Fe(CO)(2), and [((iPr)PDI)Fe(CO)(2)](+) [(iPr)PDI = 2,6-(2,6-(i)Pr(2)C(6)H(3)N═CMe)(2)C(5)H(3)N], which differ by three oxidation states, were prepared and the electronic structures evaluated using a combination of spectroscopic techniques and, in two cases, [((iPr)PDI)Fe(CO)(2)](+) and [((iPr)PDI)Fe(CO)(2)], metrical parameters from X-ray diffraction. The data establish that the cationic iron dicarbonyl complex is best described as a low-spin iron(I) compound (S(Fe) = ?) with a neutral bis(imino)pyridine chelate. The anionic iron dicarbonyl, [((iPr)PDI)Fe(CO)(2)](-), is also best described as an iron(I) compound but with a two-electron-reduced bis(imino)pyridine. The covalency of the neutral compound, ((iPr)PDI)Fe(CO)(2), suggests that both the oxidative and reductive events are not ligand- or metal-localized but a result of the cooperativity of both entities.  相似文献   

4.
Treatment of the iron bis(dinitrogen) complex, (iPrPDI)Fe(N2)2 (iPrPDI = (2,6-iPr2C6H3N=CMe)2C5H3N), with a series of aryl azides resulted in loss of 3 equiv of N2 and formation of the corresponding four-coordinate iron imide compounds, (iPrPDI)Fe(NAr). These complexes, two of which (Ar = 2,6-iPr2-C6H3 and 2,4,6-Me3-C6H2) have been characterized by X-ray diffraction, are significantly distorted from planarity. The metrical parameters in combination with M?ssbauer spectroscopic and SQUID magnetic data suggest an intermediate spin iron(III) center antiferromagnetically coupled to a ligand-centered radical. Nitrene group transfer has been accomplished by addition of 1 atm of CO, yielding aryl isocyanates, ArNCO, and (iPrPDI)Fe(CO)2. Hydrogenation of the more sterically hindered members of the series furnished free aniline and the previously reported iron dihydrogen complex. Catalytic aryl azide hydrogenation has also been achieved, and the observed relative rates are consistent with N-H bond formation as the rate-determining step in aniline formation.  相似文献   

5.
A family of bis(imino)pyridine iron neutral-ligand derivatives, ((iPr)PDI)FeL(n) ((iPr)PDI = 2,6-(2,6-iPr2-C6H3N=CMe)2C6H3N), has been synthesized from the corresponding bis(dinitrogen) complex, ((iPr)PDI)Fe(N2)2. When L is a strong-field ligand such as tBuNC or a chelating alkyl diphosphine such as DEPE (DEPE = 1,2-bis(diethylphosphino)ethane), a five-coordinate, diamagnetic compound results with no spectroscopic evidence for mixing of paramagnetic states. Reducing the field strength of the neutral donor to principally sigma-type ligands such as tBuNH2 or THT (THT = tetrahydrothiophene) also yielded diamagnetic compounds. However, the 1H NMR chemical shifts of the in-plane bis(imino)pyridine hydrogens exhibit a large chemical shift dispersion indicative of temperature-independent paramagnetism (TIP) arising from mixing of an S = 1 excited state via spin-orbit coupling. Metrical data from X-ray diffraction establish bis(imino)pyridine chelate reduction for each structural type, while M?ssbauer parameters and NMR spectroscopic data differentiate the spin states of the iron and identify contributions from paramagnetic excited states.  相似文献   

6.
The electronic structure of a family of bis(imino)pyridine iron dihalide, monohalide, and neutral ligand compounds has been investigated by spectroscopic and computational methods. The metrical parameters combined with M?ssbauer spectroscopic and magnetic data for ((i)PrPDI)FeCl(2) ((i)PrPDI = 2,6-(2,6-(i)Pr(2)C(6)H(3)N=CMe)(2)C(5)H(3)N) established a high-spin ferrous center ligated by a neutral bis(imino)pyridine ligand. Comparing these data to those for the single electron reduction product, ((i)PrPDI)FeCl, again demonstrated a high-spin ferrous ion, but in this case the S(Fe) = 2 metal center is antiferromagnetically coupled to a ligand-centered radical (S(L) = (1)/(2)), accounting for the experimentally observed S = (3)/(2) ground state. Continued reduction to ((i)PrPDI)FeL(n) (L = N(2), n = 1,2; CO, n = 2; 4-(N,N-dimethylamino)pyridine, n = 1) resulted in a doubly reduced bis(imino)pyridine diradical, preserving the ferrous ion. Both the computational and the experimental data for the N,N-(dimethylamino)pyridine compound demonstrate nearly isoenergetic singlet (S(L) = 0) and triplet (S(L) = 1) forms of the bis(imino)pyridine dianion. In both spin states, the iron is intermediate spin (S(Fe) = 1) ferrous. Experimentally, the compound has a spin singlet ground state (S = 0) due to antiferromagnetic coupling of iron and the ligand triplet state. Mixing of the singlet diradical excited state with the triplet ground state of the ligand via spin-orbit coupling results in temperature-independent paramagnetism and accounts for the large dispersion in (1)H NMR chemical shifts observed for the in-plane protons on the chelate. Overall, these studies establish that reduction of ((i)PrPDI)FeCl(2) with alkali metal or borohydride reagents results in sequential electron transfers to the conjugated pi-system of the ligand rather than to the metal center.  相似文献   

7.
Addition of 2 equiv of LiNMe(2) to the bis(imino)pyridine ferrous dichloride, ((i)(Pr)PDI)FeCl(2) ((i)(Pr)PDI = (2,6-(i)()Pr(2)-C(6)H(3)N=CMe)(2)C(5)H(3)N), resulted in deprotonation of the chelate methyl groups, yielding the bis(enamide)pyridine iron dimethylamine adduct, ((i)(Pr)PDEA)Fe(NHMe(2)) ((i)(Pr)PDEA = (2,6-(i)Pr(2)-C(6)H(3)NC=CH(2))(2)C(5)H(3)N). Performing a similar procedure with KN(SiMe(3))(2) in THF solution afforded the corresponding bis(THF) adduct, ((i)(Pr)PDEA)Fe(THF)(2). ((i)(Pr)PDEA)Fe(NHMe(2)) has also been prepared by addition of the free amine to the iron dialkyl complex, ((i)(Pr)PDI)Fe(CH(2)SiMe(3))(2), implicating formation of a transient iron amide that is sufficiently basic to deprotonate the bis(imino)pyridine methyl groups. Deprotonation of the amine ligand in ((i)(Pr)PDEA)Fe(NHMe(2)) has been accomplished by addition of amide bases to afford the ferrous amide-ate complexes, [((i)(Pr)PDEA)Fe(mu-NMe(2))M] (M = Li, K).  相似文献   

8.
9.
Bis(imino)pyridine iron alkyl complexes bearing beta-hydrogens, ((iPr)PDI)FeR (((iPr)PDI = 2,6-(2,6-(i)Pr2-C6H3N=CMe)2C5H3N; R = Et, (n)Bu, (i)Bu, CH2 (cyclo)C5H 9; 1-R), were synthesized either by direct alkylation of ((iPr)PDI)FeCl (1-Cl) with the appropriate Grignard reagent or more typically by oxidative addition of the appropriate alkyl bromide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N2)2 (1-(N2)2). In the latter method, the formal oxidative addition reaction produced ((iPr)PDI)FeBr (1-Br), along with the desired iron alkyl, 1-R. Elucidation of the electronic structure of 1-Br and related 1-R derivatives by magnetic measurements, structural studies and NMR spectroscopy established high spin ferrous compounds antiferromagnetically coupled to chelate radical anions. Thus, the formal oxidative process is bis(imino)pyridine ligand-based (one electron is formally removed from each chelate, not the iron) during oxidative addition. The kinetic stability of each 1-R compound was assayed in benzene-d6 solution and found to produce a mixture of the corresponding alkane and alkene. The kinetic stability of the iron alkyl complexes was inversely correlated with the number of beta-hydrogens present. For example, the iron ethyl complex, 1-Et, underwent clean loss of ethane over the course of three hours, whereas the corresponding 1-(i)Bu compound had a half-life of over 12 h under identical conditions. The mechanism of the decomposition was studied with a series of deuterium labeling experiments and support a pathway involving initial beta-hydrogen elimination followed by cyclometalation of an isopropyl methyl group, demonstrating an overall transfer hydrogenation pathway. The relevance of such pathways to chain transfer in bis(imino)pyridine iron catalyzed olefin polymerization reactions is also presented.  相似文献   

10.
A family of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes has been prepared, and their electronic and molecular structures have been established by a combination of X-ray diffraction, Mo?ssbauer spectroscopy, magnetochemistry, and open-shell density functional theory. For the cationic complexes, [((iPr)PDI)Fe-R][BPh(4)] ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = CH(2)SiMe(3), CH(2)CMe(3), or CH(3)), which are known single-component ethylene polymerization catalysts, the data establish high spin ferrous compounds (S(Fe) = 2) with neutral, redox-innocent bis(imino)pyridine chelates. One-electron reduction to the corresponding neutral alkyls, ((iPr)PDI)Fe(CH(2)SiMe(3)) or ((iPr)PDI)Fe(CH(2)CMe(3)), is chelate-based, resulting in a bis(imino)pyridine radical anion (S(PDI) = 1/2) antiferromagnetically coupled to a high spin ferrous ion (S(Fe) = 2). The neutral neopentyl derivative was reduced by an additional electron and furnished the corresponding anion, [Li(Et(2)O)(3)][((iPr)PDI)Fe(CH(2)CMe(3))N(2)], with concomitant coordination of dinitrogen. The experimental and computational data establish that this S = 0 compound is best described as a low spin ferrous compound (S(Fe) = 0) with a closed-shell singlet bis(imino)pyridine dianion (S(PDI) = 0), demonstrating that the reduction is ligand-based. The change in field strength of the bis(imino)pyridine coupled with the placement of the alkyl ligand into the apical position of the molecule induced a spin state change at the iron center from high to low spin. The relevance of the compounds and their electronic structures to olefin polymerization catalysis is also presented.  相似文献   

11.
12.
The bis(imino)pyridine scaffold provides support for the synthesis and characterization of unique Ag(I) pincer complexes [{ArN=CPh}(2)(NPh)]Ag(+)(OTf)(-) (Ar = 2,5-(t)Bu(2)C(6)H(3)3; 2,6-(i)Pr(2)C(6)H(3) 4). The bonding interactions between the cation-anion and between the bis(imino)pyridine ligand and the Ag centre are presented. Coordination of pyridine, toluene, 2-butyne and cyclooctene to the Ag centre led to the isolation and crystallographic characterization of labile transient adduct species. Bonding analysis of the adducts revealed conventional ligand-Ag coordination and important unconventional electron donation from the ligand to a π*-orbital of the bis(imino)pyridine group.  相似文献   

13.
The synthesis, characterization, and computational analysis of a series of low-valent, In(I) complexes bearing the bis(imino)pyridine scaffold, {Ar'N=CPh}(2)(NC(5)H(3)), is reported. A stepwise steric reduction of the aryl groups on the imine substituents around the coordination site, (Ar' = 2,5-(t)Bu(2)C(6)H(3), 2,6-(i)Pr(2)C(6)H(3), 2,6-(CH(3)CH(2))(2)C(6)H(3)) is explored through the spectroscopic and crystallographic examination of complexes [{Ar'N=CPh}(2)(NC(5)H(3))]In(+)(OTf)(-) (1-3). Compounds 1-3 displayed long In-N and In-OTf distances indicating only weak or no coordination. Application of the ligand with Ar' = 2,6-(CH(3))(2)C(6)H(3) led to an In(III) bis(imino)pyridine complex, [{2,6-Me(2)C(6)H(3)N=CPh}(2)(NC(5)H(3))]In(OTf)(2)Cl 4 with coordinated ligand, chloride, and triflate groups. Computational analysis of the interactions between the In cation and the ligands (orbital populations, bond order, and energy decomposition analysis) point to only minimal covalent interactions of the In(I) cation with the ligands. Although it features three N donor centers, the bis(imino)pyridine ligand provides little ligand-to-metal donation. A thorough electronic structure analysis revealed a correlation of compound stability with the reduced contribution of the In(I) 5s lone electron pair to the highest occupied molecular orbital (HOMO) of the cation. This effect, originating from non-bonding orbital interactions between the metal and the ligand, is more prominent in sterically crowded environments. The discovery of this correlation may help in designing new low-valent complexes.  相似文献   

14.
Treatment of the bis(diisopropylphosphino)pyridine iron dichloride, ((iPr)PNP)FeCl2 ((iPr)PNP = 2,6-(iPr2PCH2)2(C5H3N)), with 2 equiv of NaBEt3H under an atmosphere of dinitrogen furnished the diamagnetic iron(II) dihydride dinitrogen complex, ((iPr)PNP)FeH2(N2). Addition of 1 equiv of PhSiH3 to ((iPr)PNP)FeH2(N2) resulted in exclusive substitution of the hydride trans to the pyridine to yield the silyl hydride dinitrogen compound, ((iPr)PNP)FeH(SiH2Ph)N2, which has been characterized by X-ray diffraction. The solid-state structure established a distorted octahedral geometry where the hydride ligand distorts toward the iron silyl. Both ((iPr)PNP)FeH2(N2) and ((iPr)PNP)FeH(SiH2Ph)N2 form eta2-dihydrogen complexes upon exposure to H2. The iron hydrides and the eta2-H2 ligands are in rapid exchange in solution, consistent with the previously reported "cis" effect, arising from a dipole/induced dipole interaction between the two ligands. Taken together, the spectroscopic, structural, and reactivity studies highlight the relative electron-donating ability of this pincer ligand as compared to the redox-active aryl-substituted bis(imino)pyridines.  相似文献   

15.
Treatment of the five-coordinate ferrous dialkyl complex, (iPrPDI)Fe(CH2SiMe3)2 (iPrPDI = ((2,6-CHMe2)2C6H3N=CMe)2C5H3N), with [PhMe2NH][BPh4] in the presence of diethyl ether or tetrahydrofuran furnished the corresponding alkyl cations, where the donor ligand is coordinated in the basal plane of a distorted square pyramidal iron(II) alkyl cation. Performing the same reaction with the neutral Lewis acid, B(C6F5)3, induced methide abstraction from a silicon atom followed by rearrangement to afford the base free ferrous alkyl cation, [(iPrPDI)Fe(CH2SiMe2CH2SiMe3)][MeB(C6F5)3]. This complex is active for the polymerization of ethylene and yields polymers that are of higher molecular weight and narrower polydispersity than traditional methylalumoxane-activated catalysts.  相似文献   

16.
Unique features of earth‐abundant transition‐metal catalysts are reviewed in the context of catalytic carbon–carbon bond‐forming reactions. Aryl‐substituted bis(imino)pyridine iron and cobalt dihalide compounds, when activated with alkyl aluminum reagents, form highly active catalysts for the polymerization of ethylene. Open‐shell iron and cobalt alkyl complexes have been synthesized that serve as single‐component olefin polymerization catalysts. Reduced bis(imino)pyridine iron and cobalt dinitrogen compounds have also been discovered that promote the unique [2+2] cycloaddition of unactivated terminal alkenes. Studies of the electronic structure support open‐shell intermediates, a deviation from traditional strong‐field organometallic compounds that promote catalytic C−C bond formation.  相似文献   

17.
The bis(imino)pyridine iron complex, [[2,6-(MeC=N-2,6-iPr2C6H3)2C5H)N]FeCl2] (1), in combination with MAO and ZnEt2 (> 500 equiv.), is shown to catalyze polyethylene chain growth on zinc. The catalyzed chain growth process is characterized by an exceptionally fast and reversible exchange of the growing polymer chains between the iron and zinc centers. Upon hydrolysis of the resultant ZnR2 product, a Poisson distribution of linear alkanes is obtained; linear alpha-olefins with a Poisson distribution can be generated via a nickel-catalyzed displacement reaction. Other dialkylzinc reagents such as ZnMe2 and ZniPr2 also show catalyzed chain growth; in the case of ZnMe2 a slight broadening of the product distribution is observed. The products obtained from Zn(CH2Ph)2 show evidence for chain transfer but not catalyzed chain growth, whereas ZnPh2 shows no evidence for chain transfer. The Group 13 metal alkyl reagents AlR3 (R = Me, Et, octyl, IBu) and GaR3 (R = Et, nBu) act as highly efficient chain transfer agents, whereas GaMe3 exhibits behavior close to catalyzed chain growth. LinBu, MgnBu2 and BEt3 result in very low activity catalyst systems. SnMe4 and PbEt4 give active catalysts, but with very little chain transfer to Sn or Pb. The remarkably efficient iron catalyzed chain growth reaction for ZnEt2 compared to other metal alkyls can be rationalized on the basis of: (1) relatively low steric hindrance around the zinc center, (2) their monomeric nature in solution, (3) the relatively weak Zn-C bond, and (4) a reasonably close match in Zn-C and Fe-C bond strengths.  相似文献   

18.
The structure and electrochemical properties of a series of bis(imino)pyridine Co(II) complexes (NNN)CoX(2) and [(NNN)(2)Co][PF(6)](2) (NNN = 2,6-bis[1-(4-R-phenylimino)ethyl]pyridine, with R = CN, CF(3), H, CH(3), OCH(3), N(CH(3))(2); NNN = 2,6-bis[1-(2,6-(iPr)(2)-phenylimino)ethyl]pyridine and X = Cl, Br) were studied using a combination of electrochemical and theoretical methods. Cyclic voltammetry measurements and DFT/B3LYP calculations suggest that in solution (NNN)CoCl(2) complexes exist in equilibrium with disproportionation products [(NNN)(2)Co](2+) [CoCl(4)](2-) with the position of the equilibrium heavily influenced by both the solvent polarity and the steric and electronic properties of the bis(imino)pyridine ligands. In strong polar solvents (e.g., CH(3)CN or H(2)O) or with electron donating substituents (R = OCH(3) or N(CH(3))(2)) the equilibrium is shifted and only oxidation of the charged products [(NNN)(2)Co](2+) and [CoCl(4)](2-) is observed. Conversely, in nonpolar organic solvents such as CH(2)Cl(2) or with electron withdrawing substituents (R = CN or CF(3)), disproportionation is suppressed and oxidation of the (NNN)CoCl(2) complexes leads to 18e(-) Co(III) complexes stabilized by coordination of a solvent moiety. In addition, the [(NNN)(2)Co][PF(6)](2) complexes exhibit reversible Co(II/III) oxidation potentials that are strongly dependent on the electron withdrawing/donating nature of the N-aryl substituents, spanning nearly 750 mV in acetonitrile. The resulting insight on the regulation of redox properties of a series of bis(imino)pyridine cobalt(II) complexes should be particularly valuable to tune suitable conditions for reactivity.  相似文献   

19.
Experiment and theory have been used to study reactive alkyne pi complexes, intermediates in anti-Markovnikov alkyne hydration by CpRu bis(phosphine) catalysts with heterocyclic substituents. Each heterocycle accepts a hydrogen bond from an acetylene C-H, as revealed by NMR coupling constants between alkyne 13C and 1H nuclei as well as between alkyne 13C and pyridine 15N (2hJCN). Moreover, further alkyne transformations occur at temperatures from 50 to 90 degrees C below what is needed to convert a control compound without the heterocycles.  相似文献   

20.
The first N2 complex stabilised by N-heterocyclic carbene ligands, Fe(C-N-C)(N2)2, has been obtained by the reduction of Fe(C-N-C)Br2 where C-N-C = 2,6-bis(aryl-imidazol-2-ylidene)pyridine, aryl = 2,6-Pr(i)2C6H3, with Na(Hg); it serves as a convenient precursor for other iron NHC 'pincer' complexes of the type Fe(C-N-C)(N2)L where L = C2H4, PMe3 and Fe(C-N-C)(CO)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号