首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
关于颗粒悬浮机理和悬浮动的讨论   总被引:7,自引:1,他引:6  
刘大有 《力学学报》1999,31(6):661-670
从分析气体分子的悬浮和静水中Brown微粒的悬浮之机理出发,论述了重力场中粒子(分子、微粒等)的悬浮不一定需要其它外力,粒子本身的任何形式的无规则运动,达到一定强度后都能使粒子弥散悬浮.河流中的泥沙颗粒和气(水)力输送管道中的颗粒的悬浮也主要靠颗粒物的无规则运动.作用于颗粒的升力和其它力可改变颗粒悬浮沿高度的分布,但仅用这些力(若无任何无规则运动)无法解释颗粒的弥散悬浮状态.讨论了颗粒对流动阻力的双重作用:支持颗粒悬浮的湍流脉动因引入颗粒而削弱,这是颗粒的减阻作用;颗粒增阻的一个主要机制是,流体给予颗粒的水平动量在颗粒一壁面碰撞中不断地损失.用悬浮动概念解释颗粒引起的增阻是不正确的.  相似文献   

2.
介电泳分离是一种高效的微细颗粒分离技术,利用非均匀电场极化并操纵分离微流道中的颗粒. 柔性微粒在介电泳分离过程中同时受多种物理场、多相流和微粒变形等复杂因素的影响,仅用单一的计算方法对其进行模拟存在一定的难度,本文采用有限单元——格子玻尔兹曼耦合计算的方法处理这一难题.介观尺度的格子玻尔兹曼方法将流体看成由大量微小粒子组成,在离散格子上求解玻尔兹曼输运方程,易于处理多相流及大变形问题,特别适合模拟柔性颗粒在介电泳分离过程中的变形情况.另一方面,介电泳分离过程的模拟需求解流体、电场和微粒运动方程,计算量相当庞大,通过有限单元法求解介电泳力,提高计算效率.利用这种多尺度耦合计算方法,对一款现有的介电泳芯片分离过程进行了模拟.分析了微粒在电场作用下产生的介电泳力,揭示了介电泳力与电场变化率等因素之间的关系.对微粒运动轨迹及其变形的情况进行了研究,发现微粒的变形主要与流体剪切作用有关.这种多尺度耦合计算方法,为复杂微流体的计算提供了一种有效的解决方案.   相似文献   

3.
介电泳分离是一种高效的微细颗粒分离技术,利用非均匀电场极化并操纵分离微流道中的颗粒.柔性微粒在介电泳分离过程中同时受多种物理场、多相流和微粒变形等复杂因素的影响,仅用单一的计算方法对其进行模拟存在一定的难度,本文采用有限单元-格子玻尔兹曼耦合计算的方法处理这一难题.介观尺度的格子玻尔兹曼方法将流体看成由大量微小粒子组成,在离散格子上求解玻尔兹曼输运方程,易于处理多相流及大变形问题,特别适合模拟柔性颗粒在介电泳分离过程中的变形情况.另一方面,介电泳分离过程的模拟需求解流体、电场和微粒运动方程,计算量相当庞大,通过有限单元法求解介电泳力,可提高计算效率.利用这种多尺度耦合计算方法,对一款现有的介电泳芯片分离过程进行了模拟.分析了微粒在电场作用下产生的介电泳力,揭示了介电泳力与电场变化率等因素之间的关系.对微粒运动轨迹及其变形的情况进行了研究,发现微粒的变形主要与流体剪切作用有关.这种多尺度耦合计算方法,为复杂微流体的计算提供了一种有效的解决方案.  相似文献   

4.
悬浮颗粒运动的格子Boltzmann数值模拟   总被引:7,自引:0,他引:7  
吴锤结  周菊光 《力学学报》2004,36(2):151-162
将固体颗粒的牛顿力学和格子Boltzmann方法相结合,研究不规则形状悬浮颗粒在流场中的运动。通过受力分析,精确求得其所受合力、合力矩、合力作用中心等。提出了跟随颗粒运动的动网格计算域技术和模拟悬浮颗粒转动运动的局部数组方法及Euler-Lagrange两套坐标技术。通过对椭圆颗粒运动的数值模拟和对照他人对矩形颗粒的研究,分析了其复杂运动规律,并提供了合理的物理解释。结果表明:运用格子Boltzmann方法和上述特殊技术可以得到与有限元方法相同的模拟精度,且具有计算速度快、对复杂形状边界处理方便灵活、程序简单及特别适合大规模并行计算等优点。  相似文献   

5.
当前,城市空气质量的不断恶化,引起了公众的普遍性关注.空气中的悬浮颗粒物,是城市大气环境重要污染源之一,其分布、运动及扩散规律已成为科学领域的研究热点.与连续流体不同,大气中的悬浮颗粒物是离散的,确定颗粒运动的模型是研究大气细微颗粒污染问题的关键.本文拟研究小空间静稳空气中亚微米级颗粒在汇作用下的运动规律,并构建其运动模型.在密闭实验空间中通过燃烧生成亚微米颗粒,利用静电吸附装置模拟颗粒汇,并通过粒子图像测速(particle image velocimetry,PIV)实验和激光多普勒测速仪(lasser Doppler velocimeter,LDV)实验技术测量分析不同空间内亚微米颗粒在大气中的热运动速度和在汇作用下的运动规律,并推导出颗粒物的速度分布经验公式.结果显示:粒子在汇作用下的运动与连续流体汇运动规律类似,但在小空间内颗粒的运动不满足流体连续方程;说明在无气流夹带输运情况下,利用汇作用及颗粒的扩散而发展的颗粒净化技术是可行的.  相似文献   

6.
悬移质泥沙通常构成冲积河流总输沙量的主体, 研究悬移质的悬浮机理具有重要的意义. 以双流体模型为基础, 通过引入弥散速度的概念, 建立了悬移质泥沙的输沙方程以及泥沙扩散系数的本构关系. 应用该方程分析了二维明渠均匀流中悬移质泥沙浓度垂向分布规律, 并与Einstein 和Chien 的泥沙浓度实验资料及经典扩散理论进行了对比. 以此为基础, 分析了紊动扩散、颗粒自身的紊动、颗粒碰撞应力对泥沙悬浮的影响在垂向上的变化, 以及浓度、粒径等对这些因素的影响. 结果表明, 泥沙颗粒在明渠紊流中的扩散是浑水的紊动扩散、颗粒自身的紊动、颗粒碰撞应力3 部分不同机制共同作用的结果, 把泥沙颗粒的悬浮简单归因于水流的紊动是不全面的.  相似文献   

7.
针对水中悬浮隧道在波浪力作用下动力响应的问题,通过柔度系数法推导得到了悬浮隧道的等效刚度系数,考虑了不同自由度运动之间的耦合作用,建立了悬浮隧道管段的动力响应模型,在时间域内采用逐步积分法迭代求解其运动控制方程.波浪力采用Airy线性波理论和Morison方程计算.计算结果表明,在波浪力作用下悬浮隧道管段产生较大的横荡位移,且随着波频或锚索中预张力的减小,响应振幅增大.在悬浮隧道的动力响应分析中,若不考虑不同自由度运动之间的耦合作用,会过低估计垂荡响应的幅值.  相似文献   

8.
变速运动颗粒所受非恒定作用力分析   总被引:5,自引:0,他引:5  
本文利用典型函数试验法对变速运动颗粒所受非恒定作用力(Basset力和附加质量力)进行了深入分析和比较,结果表明:Basset力对重质颗粒运动的影响很大,不能忽略;对于轻质颗粒,则以附加质量力的作用为主,Basset力可忽略不计.  相似文献   

9.
浓悬浮体的屈服应力和最大填充率   总被引:2,自引:0,他引:2  
方图南  吴湘萍 《力学学报》1996,28(4):400-405
对剪切稀化的浓悬浮体,假设在剪切状态下结构参数变化的速率服从一级动力学关系,在此基础上导出浓悬浮体最大填充率与剪应力、屈服应力与填充率之间关系的数学模型.用硅粉-甘油水溶液及可可粉-可可脂两种悬浮体的实验确认了模型对工业微米级颗粒悬浮体的适用性  相似文献   

10.
陈彬  刘阁 《计算力学学报》2017,34(6):785-792
油液在运行过程中不可避免地会产生颗粒物,影响油液的正常使用,甚至出现设备故障,因而分析含悬浮颗粒油液的动态特征,掌握在不同压力变化条件下油液及颗粒物的变化规律具有重要意义。利用两相流体理论建立了含悬浮颗粒油液的悬浮流动力学模型,通过特征线法进行了数值求解,将数值结果与实验数据比较,具有较好的一致性;根据所建模型,分析了不同系统压力条件下悬浮流中各相的脉动规律。结果表明,流场中各相参数的脉动幅值随着系统压力的增加而增大;管路始端和终端各相参数的脉动时刻分别位于1/4脉动周期(T)的奇数倍和偶数倍处,管路中段各相参数的脉动时刻则位于T/8的奇数倍处;悬浮颗粒速度会受到油液速度拖曳力作用,其变化趋势与油液速度基本一致,颗粒浓度分布与油液压力的变化趋势完全相反。  相似文献   

11.
The effect of Lorentz force on particle transport and deposition is studied by using direct numerical simulation of turbulent channel flow of electrically conducting fluids combined with discrete particle simulation of the trajectories of uncharged, spherical particles. The magnetohydrodynamic equations for fluid flows at low magnetic Reynolds numbers are adopted. The particle motion is determined by the drag, added mass, and pressure gradient forces. Results are obtained for flows with particle ensembles of various densities and diameters in the presence of streamwise, wall-normal or spanwise magnetic fields. It is found that the particle dispersion in the wall-normal and spanwise directions is decreased due to the changes of the underlying fluid turbulence by the Lorentz force, while it is increased in the streamwise direction. The particle accumulation in the near-wall region is diminished in the magnetohydrodynamic flows. In addition, the tendency of small inertia particles to concentrate preferentially in the low-speed streaks near the walls is strengthened with increasing Hartmann number. The particle transport by turbophoretic drift and turbulent diffusion is damped by the magnetic field and, consequently, particle deposition is reduced.  相似文献   

12.
The Lattice-Boltzmann-Method (LBM) is a powerful and robust approach for calculating fluid flows over or through complex geometries. This method was further developed for allowing the calculation of several problems relevant to dispersed particle-laden flows. For that purpose two approaches have been developed. The first approach concerns the coupling of the LBM with a classical Lagrangian procedure where the particles are considered as point-masses and hence the particles and the flow around them are numerically not resolved. As an example of use, the flow through a single pore representing a single element of a filter medium was considered and the deposition of nano-scale particles was simulated. The temporal evolution of the deposit structures is visualised and both the filtration efficiency and the pressure drop are simulated and compared with measurements. In the second developed LBM-approach, the particles are fully resolved by the numerical grid whereby the flow around particles is also captured and it is possible to effectively calculate forces on complex particles from the bounce-back boundary condition. As a case study the flow around spherical agglomerates consisting of poly-sized spherical primary particles with sintering contact is examined. Using local grid refinement and curved wall boundary condition, accurate simulations of the drag coefficient of such complex particles were performed. Especially the effect of porosity on the drag was analysed. Moreover, the flow about very porous fractal flocks, generated by a random process, was simulated for different flock size and fractal dimension. The drag coefficients resulting from LBM simulations were compared to theoretical results for Stokes flow. Finally, scenarios with moving particles were considered. First, the sedimentation of a single particle towards a plane wall was simulated and compared with measurements for validation. Secondly, the temporal sedimentation of a cluster of 13 particles was studied. Here, the primary particles were allowed to stick together and form agglomerates. This research will be the basis for further analysing agglomerate formation in laminar and turbulent flows.  相似文献   

13.
In present work, an Eulerian–Lagrangian CFD model based on the discrete element method (DEM) and immersed boundary method (IBM) has been developed, validated and used to investigate the accumulation of heavy particles in a circular bounded viscous vortex flow. The inter-particle and particle-wall collisions are resolved by a hard-sphere model. Effects of one-way and two-way coupling, Reynolds number, and particle diameter are systematically explored. Results show that, in case of one-way coupling, the majority of particles will spiral into an accumulation point located near the stagnation point of the flow field. The accumulation point represents a stable equilibrium point as the drag created by the flow field balances the destabilizing centrifugal force on the particle. However, in case of two-way coupling, there does not exist a stable accumulation point due to the strong interaction between the particles and fluid dynamics. Instead most particles are expelled from the circular domain and accumulate on the confining wall. The percentage of accumulated particles on the wall increases with increasing Reynolds number and particle diameter. Moreover, influence of three well-known drag models is also studied and they give consistent results on the particle accumulation behavior, although small quantitative differences can still be discerned.  相似文献   

14.
A new theoretical model has been developed to explain the behavior of transverse particle transport in turbulent flow of a dilute two-phase suspension due to turbulent diffusion. This model is based on the ability of a particle to respond to surrounding fluid motion and depends on particle size and density relative to the carrier fluid, the fractional variation in particle concentration in the transverse direction as well as the existing turbulence structure of the surrounding fluid. The model developed in this investigation has been formulated by dividing the transverse fluid velocity, as seen by a particular particle, into two superimposed components representing, respectively, the transverse turbulent fluid fluctuations and an apparent transverse local fluid drifting velocity due to the effect on the transverse oscillatory component of fluid motion by the transverse concentration distribution of particles. A subsequent paper will show that the theory (together with other new results on the concentration effects on particle drag and lift and fluid turbulence properties) can help to explain the phenomena measured previously.  相似文献   

15.
The body-force-driven motion of a homogeneous distribution of spherically symmetric porous shells in an incompressible Newtonian fluid and the fluid flow through a bed of these shell particles are investigated analytically. The effect of the hydrodynamic interaction among the porous shell particles is taken into account by employing a cell-model representation. In the limit of small Reynolds number, the Stokes and Brinkman equations are solved for the flow field around a single particle in a unit cell, and the drag force acting on the particle by the fluid is obtained in closed forms. For a suspension of porous spherical shells, the mobility of the particles decreases or the hydrodynamic interaction among the particles increases monotonically with a decrease in the permeability of the porous shells. The effect of particle interactions on the creeping motion of porous spherical shells relative to a fluid can be quite significant in some situations. In the limiting cases, the analytical solution describing the drag force or mobility for a suspension of porous spherical shells reduces to those for suspensions of impermeable solid spheres and of porous spheres. The particle-interaction behavior for a suspension of porous spherical shells with a relatively low permeability may be approximated by that of permeable spheres when the porous shells are sufficiently thick.  相似文献   

16.
Equations are written for the velocities of rotation and translation of rigid rod-like particles suspended in arbitrary Stokes flows. These make use of the first approximation from slender body theory for the evaluation of drag forces parallel and transverse to the particle axis, and neglect couples induced by shear stress at the particle surface. They are therefore asymptotically valid as the particle axis ratio becomes large. Simple forms of the equations, applying in constant viscosity flows, are solved, where possible analytically and otherwise numerically, and results obtained for particle motion in planar Poiseuille and sink flows. These are discussed and displayed in terms of appropriate dimensionless groups in a comprehensive set of plots, that can conveniently be used to provide information on translational and rotational velocities, and orientation and displacement as a function of time, including particle slip along and across streamlines, for a wide range of cases. In this way the effects of non-homogeneity in the flow fields are quantified.  相似文献   

17.
非牛顿流体固粒悬浮流具有广泛的应用背景,其特殊的流动属性使其成为一些新兴技术领域的核心突破点.同时,该流动又比较复杂,即便是在低固粒浓度的情况下,非牛顿流体特性也会对整个系统的微结构产生重要的影响,从而进一步影响固粒的运动.本文给出了非牛顿流体方程、固粒运动方程和非牛顿流体固粒悬浮流的特征参数,分析了这些参数的作用;阐述了单个固粒在管道中的径向移动、多固粒的相互作用和聚集、多固粒形成的链状结构以及非圆球固粒运动等方面的研究成果、结果分析以及尚未解决的问题,并对以上问题进行了总结和展望,给出了需要深入研究的具体问题和内容,旨在为进一步的研究提供参考和依据.  相似文献   

18.
We perform direct numerical simulation of three‐dimensional turbulent flows in a rectangular channel, with a lattice Boltzmann method, efficiently implemented on heavily parallel general purpose graphical processor units. After validating the method for a single fluid, for standard boundary layer problems, we study changes in mean and turbulent properties of particle‐laden flows, as a function of particle size and concentration. The problem of physical interest for this application is the effect of water droplets on the turbulent properties of a high‐speed air flow, near a solid surface. To do so, we use a Lagrangian tracking approach for a large number of rigid spherical point particles, whose motion is forced by drag forces caused by the fluid flow; particle effects on the latter are in turn represented by distributed volume forces in the lattice Boltzmann method. Results suggest that, while mean flow properties are only slightly affected, unless a very large concentration of particles is used, the turbulent vortices present near the boundary are significantly damped and broken down by the turbulent motion of the heavy particles, and both turbulent Reynolds stresses and the production of turbulent kinetic energy are decreased because of the particle effects. We also find that the streamwise component of turbulent velocity fluctuations is increased, while the spanwise and wall‐normal components are decreased, as compared with the single fluid channel case. Additionally, the streamwise velocity of the carrier (air) phase is slightly reduced in the logarithmic boundary layer near the solid walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Drag forces of interacting particles suspended in power-law fluid flows were investigated in this study. The drag forces of interacting spheres were directly measured by using a micro-force measuring system. The tested particles include a pair of interacting spheres in tandem and individual spheres in a cubic matrix of multi-sphere in flows with the particle Reynolds number from 0.7 to 23. Aqueous carboxymethycellulose (CMC) solutions and glycerin solutions were used as the fluid media in which the interacting spheres were suspended. The range of power-law index varied from 0.6 to 1.0. In conjunction to the drag force measurements, the flow patterns and velocity fields of power-law flows over a pair of interacting spheres were also obtained from the laser assisted flow visualization and numerical simulation.

Both experimental and computational results suggest that, while the drag force of an isolated sphere depends on the power-index, the drag coefficient ratio of an interacting sphere is independent from the power-law index but strongly depends on the separation distance and the particle Reynolds number. Our study also shows that the drag force of a particle in an assemblage is strongly positions dependent, with a maximum difference up to 38%.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号