首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Some results on integral sum graphs   总被引:1,自引:0,他引:1  
Wang Yan  Bolian Liu   《Discrete Mathematics》2001,240(1-3):219-229
Let Z denote the set of all integers. The integral sum graph of a finite subset S of Z is the graph (S,E) with vertex set S and edge set E such that for u,vS, uvE if and only if u+vS. A graph G is called an integral sum graph if it is isomorphic to the integral sum graph of some finite subset S of Z. The integral sum number of a given graph G, denoted by ζ(G), is the smallest number of isolated vertices which when added to G result in an integral sum graph. Let x denote the least integer not less than the real x. In this paper, we (i) determine the value of ζ(KnE(Kr)) for r2n/3−1, (ii) obtain a lower bound for ζ(KnE(Kr)) when 2r<2n/3−1 and n5, showing by construction that the bound is sharp when r=2, and (iii) determine the value of ζ(Kr,r) for r2. These results provide partial solutions to two problems posed by Harary (Discrete Math. 124 (1994) 101–108). Finally, we furnish a counterexample to a result on the sum number of Kr,s given by Hartsfiedl and Smyth (Graphs and Matrices, R. Rees (Ed.), Marcel, Dekker, New York, 1992, pp. 205–211).  相似文献   

2.
In a geometric bottleneck shortest path problem, we are given a set S of n points in the plane, and want to answer queries of the following type: given two points p and q of S and a real number L, compute (or approximate) a shortest path between p and q in the subgraph of the complete graph on S consisting of all edges whose lengths are less than or equal to L. We present efficient algorithms for answering several query problems of this type. Our solutions are based on Euclidean minimum spanning trees, spanners, and the Delaunay triangulation. A result of independent interest is the following. For any two points p and q of S, there is a path between p and q in the Delaunay triangulation, whose length is less than or equal to 2π/(3cos(π/6)) times the Euclidean distance |pq| between p and q, and all of whose edges have length at most |pq|.  相似文献   

3.
In this paper, we describe a randomized incremental algorithm for computing the upper envelope (i.e., the pointwise maximum) of a set of n triangles in three dimensions. This algorithm is an on-line algorithm. It is structure-sensitive: the expected cost of inserting the n-th triangle is O(log nΣr=1nτ(r)/r2) and depends on the expected size τ(r) of an intermediate result for r triangles. Since τ(r) can be Θ(r2(r)) in the worst case, this cost is bounded in the worst case by O(n(n) log n). (The expected behaviour is analyzed by averaging over all possible orderings of the input.) The main new characteristics is the use of a two-level history graph. (The history graph is an auxiliary data structure maintained by randomized incremental algorithms.) Our algorithm is fairly simple and appears to be efficient in practice. It extends to surfaces and surface patches of fixed maximum algebraic degree.  相似文献   

4.
Xuding Zhu 《Discrete Mathematics》1998,190(1-3):215-222
Suppose G is a graph. The chromatic Ramsey number rc(G) of G is the least integer m such that there exists a graph F of chromatic number m for which the following is true: for any 2-colouring of the edges of F there is a monochromatic subgraph isomorphic to G. Let Mn = min[rc(G): χ(G) = n]. It was conjectured by Burr et al. (1976) that Mn = (n − 1)2 + 1. This conjecture has been confirmed previously for n 4. In this paper, we shall prove that the conjecture is true for n = 5. We shall also improve the upper bounds for M6 and M7.  相似文献   

5.
We consider a variation of a classical Turán-type extremal problem (F. Chung, R. Graham, Erd s on Graphs: His Legacy of Unsolved Problems, AK Peters Ltd., Wellesley, 1998, Chapter 3) as follows: Determine the smallest even integer σ(Kr,s,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(Kr,s,n) is potentially Kr,s-graphic, where Kr,s is a r×s complete bipartite graph, i.e., π has a realization G containing Kr,s as its subgraph. In this paper, we first give sufficient conditions for a graphic sequence being potentially Kr,s-graphic, and then we determine σ(Kr,r,n) for r=3,4.  相似文献   

6.
Cubic bridgeless graphs with chromatic index four are called uncolorable. We introduce parameters measuring the uncolorability of those graphs and relate them to each other. For k=2,3, let ck be the maximum size of a k-colorable subgraph of a cubic graph G=(V,E). We consider r3=|E|−c3 and . We show that on one side r3 and r2 bound each other, but on the other side that the difference between them can be arbitrarily large. We also compare them to the oddness ω of G, the smallest possible number of odd circuits in a 2-factor of G. We construct cyclically 5-edge connected cubic graphs where r3 and ω are arbitrarily far apart, and show that for each 1c<2 there is a cubic graph such that ωcr3. For k=2,3, let ζk denote the largest fraction of edges that can be k-colored. We give best possible bounds for these parameters, and relate them to each other.  相似文献   

7.
We study the problem of selecting one of the r best of n rankable individuals arriving in random order, in which selection must be made with a stopping rule based only on the relative ranks of the successive arrivals. For each r up to r=25, we give the limiting (as n→∞) optimal risk (probability of not selecting one of the r best) and the limiting optimal proportion of individuals to let go by before being willing to stop. (The complete limiting form of the optimal stopping rule is presented for each r up to r=10, and for r=15, 20 and 25.) We show that, for large n and r, the optical risk is approximately (1−t*)r, where t*≈0.2834 is obtained as the roof of a function which is the solution to a certain differential equation. The optimal stopping rule τr,n lets approximately t*n arrivals go by and then stops ‘almost immediately’, in the sense that τr,n/nt* in probability as n→∞, r→∞  相似文献   

8.
Let Dn,r denote the largest rth nearest neighbor link for n points drawn independently and uniformly from the unit d-cube Cd. We show that according as r < d or r>d, the limiting behavior of Dn,r, as n → ∞, is determined by the two-dimensional ‘faces’ respectively one-dimensional ‘edges’ of the boundary of Cd. If d = r, a ‘balance’ between faces and edges occurs. In case of a d-dimensional sphere (instead of a cube) the boundary dominates the asymptotic behavior of Dn,r if d 3 or if d = 2, r 3.  相似文献   

9.
In this paper, we consider the optimal assignments of unions of intervals to the vertices of the compatibility graph G, which arises in connection with frequency assignment and traffic phasing problems. It is shown that the optimal multiple interval phasing numbers θJrx(G) and θJrxN(G), are optimal solutions to linear programming problems whose variables correspond to maximal cliques of G. Efficient algorithms are given for determining the first number, θJrx(G), when G is a chordal graph or a transitively orientable graph.  相似文献   

10.
It is shown that for fixed 1 r s < d and > 0, if X PG(d, q) contains (1 + )qs points, then the number of r-flats spanned by X is at least c()q(r+1)(s+1−r), i.e. a positive fraction of the number of r-flats in PG(s + 1,q).  相似文献   

11.
A graph is called supereulerian if it has a spanning closed trail. Let G be a 2-edge-connected graph of order n such that each minimal edge cut SE(G) with |S|3 satisfies the property that each component of GS has order at least (n−2)/5. We prove that either G is supereulerian or G belongs to one of two classes of exceptional graphs. Our results slightly improve earlier results of Catlin and Li. Furthermore, our main result implies the following strengthening of a theorem of Lai within the class of graphs with minimum degree δ4: If G is a 2-edge-connected graph of order n with δ(G)4 such that for every edge xyE(G) , we have max{d(x),d(y)}(n−2)/5−1, then either G is supereulerian or G belongs to one of two classes of exceptional graphs. We show that the condition δ(G)4 cannot be relaxed.  相似文献   

12.
We report two parameter alternating group explicit (TAGE) iteration method to solve the tri-diagonal linear system derived from a new finite difference discretization of sixth order accuracy of the two point singular boundary value problem , 0 < r < 1,  = 1 and 2 subject to boundary conditions u(0) = A, u(1) = B, where A and B are finite constants. We also discuss Newton-TAGE iteration method for the sixth order numerical solution of two point non-linear boundary value problem. The proof for the convergence of the TAGE iteration method when the coefficient matrix is real and unsymmetric is discussed. Numerical results are presented to illustrate the proposed iterative methods.  相似文献   

13.
Length-bounded disjoint paths in planar graphs   总被引:1,自引:0,他引:1  
The following problem is considered: given: an undirected planar graph G=(V,E) embedded in , distinct pairs of vertices {r1,s1},…,{rk,sk} of G adjacent to the unbounded face, positive integers b1,…,bk and a function ; find: pairwise vertex-disjoint paths P1,…,Pk such that for each i=1,…,k, Pi is a risi-path and the sum of the l-length of all edges in Pi is at most bi. It is shown that the problem is NP-hard in the strong sense. A pseudo-polynomial-time algorithm is given for the case of k=2.  相似文献   

14.
Let q be a nonnegative real number, and λ and σ be positive constants. This article studies the following impulsive problem: for n = 1, 2, 3,…,
. The number λ* is called the critical value if the problem has a unique global solution u for λ < λ*, and the solution blows up in a finite time for λ > λ*. For σ < 1, existence of a unique λ* is established, and a criterion for the solution to decay to zero is studied. For σ > 1, existence of a unique λ* and three criteria for the blow-up of the solution in a finite time are given respectively. It is also shown that there exists a unique T* such that u exists globally for T> T*, and u blows up in a finite time for T < T*.  相似文献   

15.
Optimally super-edge-connected transitive graphs   总被引:4,自引:0,他引:4  
Jixiang Meng   《Discrete Mathematics》2003,260(1-3):239-248
Let X=(V,E) be a connected regular graph. X is said to be super-edge-connected if every minimum edge cut of X is a set of edges incident with some vertex. The restricted edge connectivity λ′(X) of X is the minimum number of edges whose removal disconnects X into non-trivial components. A super-edge-connected k-regular graph is said to be optimally super-edge-connected if its restricted edge connectivity attains the maximum 2k−2. In this paper, we define the λ′-atoms of graphs with respect to restricted edge connectivity and show that if X is a k-regular k-edge-connected graph whose λ′-atoms have size at least 3, then any two distinct λ′-atoms are disjoint. Using this property, we characterize the super-edge-connected or optimally super-edge-connected transitive graphs and Cayley graphs. In particular, we classify the optimally super-edge-connected quasiminimal Cayley graphs and Cayley graphs of diameter 2. As a consequence, we show that almost all Cayley graphs are optimally super-edge-connected.  相似文献   

16.
We study the problem of designing fault-tolerant routings with small routing tables for a k-connected network of n processors in the surviving route graph model. The surviving route graph R(G,ρ)/F for a graph G, a routing ρ and a set of faults F is a directed graph consisting of nonfaulty nodes of G with a directed edge from a node x to a node y iff there are no faults on the route from x to y. The diameter of the surviving route graph could be one of the fault-tolerance measures for the graph G and the routing ρ and it is denoted by D(R(G,ρ)/F). We want to reduce the total number of routes defined in the routing, and the maximum of the number of routes defined for a node (called route degree) as least as possible. In this paper, we show that we can construct a routing λ for every n-node k-connected graph such that n2k2, in which the route degree is , the total number of routes is O(k2n) and D(R(G,λ)/F)3 for any fault set F (|F|<k). In particular, in the case that k=2 we can construct a routing λ′ for every biconnected graph in which the route degree is , the total number of routes is O(n) and D(R(G,λ′)/{f})3 for any fault f. We also show that we can construct a routing ρ1 for every n-node biconnected graph, in which the total number of routes is O(n) and D(R(G1)/{f})2 for any fault f, and a routing ρ2 (using ρ1) for every n-node biconnected graph, in which the route degree is , the total number of routes is and D(R(G2)/{f})2 for any fault f.  相似文献   

17.
Bounds on the number of isolates in sum graph labeling   总被引:1,自引:0,他引:1  
A simple undirected graph H is called a sum graph if there is a labeling L of the vertices of H into distinct positive integers such that any two vertices u and v of H are adjacent if and only if there is a vertex w with label L(w)=L(u)+L(v). The sum number σ(G) of a graph G=(V,E) is the least integer r such that the graph H consisting of G and r isolated vertices is a sum graph. It is clear that σ(G)|E|. In this paper, we discuss general upper and lower bounds on the sum number. In particular, we prove that, over all graphs G=(V,E) with fixed |V|3 and |E|, the average of σ(G) is at least . In other words, for most graphs, σ(G)Ω(|E|).  相似文献   

18.
Let X1, X2,…be identically distributed random variables from an unknown continuous distribution. Further let Ir(1), Ir(2),…be a sequence of indicator functions defined on X1, X2,…by Ir(k) = 0 if k < r, Ir(k) = 1 if Xk is a r-record AND = 0 otherwise. Suppose that we observe X1, X2,… at times T1 < T2 <… where the Tk's are realisations of some regular counting process (N(τ)) defined on the positive half-line. Having observed [0, τ], say, the problem is to predict the future behaviour of the counting processes (Rr(τ, s)) = # r-records in [τ, s]. More specifically the objective of this paper is to show that these processes can be (inhomogeneous) Poisson processes even if (N(τ))τ0 has dependent increments.

The strong link between optimal selection and optimal stopping of record sequences or record processes, perhaps not fully recognized so far, is pointed out in this paper. It is shown to lead to a unification of the treatment of problems which, at first sight, are rather different. Moreover the stopping of record processes in continuous time can lead to rigorous and elegant solutions in cases where dynamic programming is bound to fail. Several examples will be given to facilitate a comparison with other methods.  相似文献   


19.
Let Dn(r) denote the convex hull of degree sequences of simple r-uniform hypergraphs on the vertex set {1,2,…,n}. The polytope Dn(2) is a well-studied object. Its extreme points are the threshold sequences (i.e., degree sequences of threshold graphs) and its facets are given by the Erdös–Gallai inequalities. In this paper we study the polytopes Dn(r) and obtain some partial information. Our approach also yields new, simple proofs of some basic results on Dn(2). Our main results concern the extreme points and facets of Dn(r). We characterize adjacency of extreme points of Dn(r) and, in the case r=2, determine the distance between two given vertices in the graph of Dn(2). We give a characterization of when a linear inequality determines a facet of Dn(r) and use it to bound the sizes of the coefficients appearing in the facet defining inequalities; give a new short proof for the facets of Dn(2); find an explicit family of Erdös–Gallai type facets of Dn(r); and describe a simple lifting procedure that produces a facet of Dn+1(r) from one of Dn(r).  相似文献   

20.
Let G be an infinite locally finite connected graph. We study the reconstructibility of G in relation to the structure of its end set . We prove that an infinite locally finite connected graph G is reconstructible if there exists a finite family i)0i (n2) of pairwise finitely separable subsets of such that, for all x,y,x′,yV(G) and every isomorphism f of G−{x,y} onto G−{x′,y′} there is a permutation π of {0,…,n−1} such that for 0i<n. From this theorem we deduce, as particular consequences, that G is reconstructible if it satisfies one of the following properties: (i) G contains no end-respecting subdivision of the dyadic tree and has at least two ends of maximal order; (ii) the set of thick ends or the one of thin ends of G is finite and of cardinality greater than one. We also prove that if almost all vertices of G are cutvertices, then G is reconstructible if it contains a free end or if it has at least a vertex which is not a cutvertex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号