首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jacobsen H  Donahue JP 《Inorganic chemistry》2008,47(21):10037-10045
The molecular and electronic structure of monomeric ([Fe(S2C2H2)2](z), [Fe(S2C2(C6H4-p-OCH3)2)2](z)) and dimeric ([{Fe(S2C2H2)2}2](z)) iron bis(dithiolene) complexes, and of their phosphine adducts ([(PH3)Fe(S2C2H2)2](z), [(P(C6H5)3)Fe(S2C2H2)2](z), [(PH3)Fe(S2C2(C6H4-p-OCH3)2)2](z)), carrying various charges (z = 0, 1-, 2-), have been investigated by density functional theory (DFT). Net total spin polarization values S of zero, two, and four have been considered for all neutral model compounds and their dianions, whereas all monoanions have been examined with net total spin polarization values S of one, three, and five. The DFT calculations utilized the pure functional BP86, as well as the hybrid functionals B3LYP and B3LYP*. For the monomers, the calculations reveal the presence of redox non-innocent dithiolene ligands and antiferromagnetic coupling between the ligands and the metal center. For the dimers, complexes with antiferromagnetically coupled iron centers have been found to represent structures of low energy, if not lowest energy structures. The spin-coupling constant of [{Fe(S2C2H2)2}2](2-) is calculated as J = -230 cm(-1). On the basis of the computational results, a model for reversible, electrochemically controlled binding and release of phosphine ligands to iron bis(dithiolene) complexes is proposed. Only BP86 and B3LYP* results, but not those of B3LYP calculations, are in qualitative agreement with experimental findings. BP86 calculations provide the best quantitative match in comparison with the experiment.  相似文献   

3.
Electron transfer oxidation reaction of bis(dithiolene)monooxomolybdenum(iv) (Mo(IV)OL(x)) complexes is studied as a model of oxidative-half reaction of arsenite oxidase molybdenum enzymes. The reactions are revealed to involve proton-coupled electron transfer. Electrochemical oxidation of Mo(IV)OL(x) yields the corresponding bis(dithiolene)dioxomolybdenum(vi) complexes in basic solution, where the conversion of Mo(IV)OL(dmed) supported by a smaller electron donating dithiolene ligand (1,2-dicarbomethoxyethylene-1,2-dithiolate, L(dmed)) to Mo(VI)O(2)L(dmed) is faster than that of Mo(IV)OL(bdt) with a larger electron donating dithiolene ligand (1,2-benzenedithiolate, L(bdt)) under the same conditions. Titration experiments for the electrochemical oxidation reveal that the reaction involves two-electron oxidation and two equivalents of OH(-) consumption per Mo(IV)OL(x). In the conversion process of Mo(IV)OL(x) to Mo(VI)O(2)L(x), the five-coordinate bis(dithiolene)monooxomolybdenum(v) complex (Mo(V)OL(x)) being a one-electron oxidized species of Mo(IV)OL(x) is suggested to react with OH(-). Mo(V)OL(x) reacts with OH(-) in CH(3)CN or C(2)H(5)CN in a 2?:?2 ratio to give one equivalent Mo(IV)OL(x) and one equivalent Mo(VI)O(2)L(x), which is confirmed by the UV-vis and IR spectroscopies. The low temperature stopped-flow analysis allows investigations of the mechanism for the reaction of Mo(V)OL(x) with OH(-). The kinetic study for the reaction of Mo(V)OL(dmed) with OH(-) suggests that Mo(V)OL(dmed) reacts with OH(-) to give a six-coordinate oxo-hydroxo-molybdenum(v) species, Mo(V)O(OH), and, then, the resulting species undergoes successive deprotonation by another OH(-) and oxidation by a remaining Mo(V)OL(dmed) to yield the final products Mo(IV)OL(dmed) and Mo(VI)O(2)L(dmed) complexes in a 1?:?1 ratio. In this case, the Mo(V)O(2) species are involved as an intermediate in the reaction. On the other hand, in the reaction of Mo(V)OL(bdt) with OH(-), coordination of OH(-) to the Mo(V) centre to give a six-coordinate Mo(V)O(OH)L(bdt) species becomes the rate limiting step and other intermediates are not suggested. On the basis of these results, the ligand effects of the dithiolene ligands on the reactivity of the bis(dithiolene)molybdenum complexes are discussed.  相似文献   

4.
Thermogravimetric measurements show that complexes of cobalt(II) dihalides with aryl and alkyl substituted phosphines and triphenylphosphine oxide in an oxygen containing atmosphere decompose to yield solid phases consisting of Co3O4 and P2O5.
Zusammenfassung Komplexe von Kobalt(II)dihalogeniden mit aryl- und alkylsubstituierten Phosphinen und Triphenylphosphinoxyd wurden einer thermogravimetrischer Prüfung unter Sauerstoff unterworfen. Die zurückbleibende feste Phase bestand aus Co3O4 und P2O5.

Résumé On a étudié la décomposition thermique des complexes dihalogénés de cobalt(II) avec les aryl et alcoylphosphines substituées et les oxydes de triphénylphosphine. En atmosphère d'oxygène, Co3O4 et P2O5 constituent la phase solide résiduelle.

, , , - -, , , , 34 25.
  相似文献   

5.
A series of new complexes of multi-sulfur 1,2-dithiolene ligands, [Ru(bipy)3][Ni(L)2]2 (bipy?=?2,2′-bipyridine; L?=?pddt (6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate), dddt (5,6-dihydro-1,4-dithiin-2,3-dithiolate)), have been synthesized and characterized. One typical complex, [Ru(bipy)3][Ni(pddt)2]2·2H2O (1), crystallized in an acentric space group of P212121, with the cell dimensions of a?=?8.634(1), b?=?14.560(1), c?=?49.889(5)?Å, α?=?β?=?γ?=?90°, and Z?=?4. It consists of alternating columns of cations and anions along the a direction. The structure was refined by full matrix least squares methods to R 1?=?0.0340, wR 2?=?0.0670. Magnetic studies on [Ph2Cr][Ni(dddt)2] are also reported.  相似文献   

6.
Brookhart and Gibson have recently described the synthesis of new iron and cobalt complexes with pyridine bis(imine) ligands for the polymerisation of ethylene and propylene. In the present paper, the synthesis of new complexes modified with heteroatoms, based on the above-mentioned catalysts, is reported. Higher activities are observed. The influence of the polymerisation temperature on the catalytic activity has been investigated. The first example of the successful copolymerisation of ethylene and 1-hexene with these catalysts is also discussed. The (co)polymers have been characterized by high temperature 13C NMR. To cite this article: R. Souane et al., C. R. Chimie 5 (2002) 43–48  相似文献   

7.
To contribute to the development of single-component molecular metals, several nickel complexes with cyclohexeno-condensed or ethylenedioxy-substituted TTF (tetrathiafulvalene) dithiolate ligands, (R(4)N)(n)[Ni(chdt)(2)] [R = Me, n = 2 (1); R = (n)Bu, n = 1 (2); n = 0 (3)] and (R(4)N)(n)[Ni(eodt)(2)] [R = Me, n = 2 (4); R = (n)Bu, n = 1 (5); n = 0 (6)], were prepared. X-ray structures were determined on the monoanionic species 2 and 5. The tetra-n-butylammonium complex of the monoanionic [Ni(chdt)(2)] (2) with a 1:1 composition revealed that its magnetic susceptibility gave a good agreement with the Bonner-Fisher model (J/k(B) = -28 K), which was derived from the one-dimensional chains of anions with a regular interval. On the other hand, the magnetic susceptibility of the tetra-n-butylammonium complex of the monoanionic [Ni(eodt)(2)] (5) showed the Curie-Weiss behavior (C = 0.376 K.emu.mol(-1) and Theta = -4.6 K). Both of the monoanionic species 2 and 5 indicate that they belong to the S = 1/2 magnetic system and have relatively large and anisotropic g-values, suggesting the contribution of the nickel 3d orbital. Electrical resistivity measurements were performed on the compressed pellets of the neutral species 3 and 6. Fairly large conductivities were obtained (sigma(rt) = 1-10 S.cm(-1)). In addition, despite the measurements on the compressed pellets of powder samples, the neutral species 6 showed metallic behavior down to ca. 120 K and retained high conductivity even at 0.6 K [sigma(0.6 K)/sigma(rt) approximately 1/30], suggesting the crystal to be essentially metallic down to very low temperature. The electrical behavior and Pauli paramagnetism of 6 indicate the system to be a new single-component metal.  相似文献   

8.
The 1H, 31P and 13C NMR spectra of cis-dialkyl(acetylacetonato)bis(tertiary phosphine)cobalt(III) complexes were obtained in several solvents. These complexes have an octahedral configuration with trans tertiary phosphine ligands. The coordinated tertiary phosphine ligands are partly dissociated in solution. One of the phosphine ligands in CoR2(acac)(PR3′)2 can be readily displaced with pyridine bases to give pyridine-coordinated complexes. From observation of the 1H and 31P NMR spectra several kinetic and thermodynamic data for exchange reactions and displacement reactions of tertiary phosphines were obtained.  相似文献   

9.
The reaction of Mo2(SCH2CH2S)2Cp2 (1; Cp=eta-C5H5) with an excess of an alkyne in refluxing dichloromethane affords the bis(dithiolene) complexes Mo2(micro-SCR1=CR2S)2Cp2 (2a, R1=R2=CO2Me; 2b, R1=R2=Ph; 2c, R1=H, R2=CO2Me) whereas with 1 equiv of alkyne at room temperature the mixed dithiolene-dithiolate species Mo2(micro-SCR1=CR2S)(micro-SCH2CH2S)Cp2 (3a, R1=R2=CO2Me; 3b, R1=R2=Ph) are formed. The remaining dithiolate ligand in 3 can then be converted into a different dithiolene by reaction with a second alkyne. Applying this methodology, we have used bis(diphenylphosphino)acetylene to prepare the first examples of complexes containing phosphine-substituted dithiolene ligands: Mo2{micro-SC(CO2Me)=C(CO2Me)S}{micro-SC(PPh2)=C(PPh2)S}Cp2 (2g) and Mo2{micro-SC(PPh2)=C(PPh2)S}2Cp2 (2h). Tri- and tetrametallic complexes can then be assembled by coordination of these diphosphines to CpRuCl units by reaction with CpRu(PPh3)2Cl. Electrochemical studies of the Ru(II)/Ru(III) couple in Mo2{micro-SC(PPh2)=C(PPh2)S}2Cp2(RuClCp)2 (4b) reveals that the two separate ruthenium centers are oxidized electrochemically at different potentials, demonstrating communication between them through the dimolybdenum bis(dithiolene) core. Density functional theory calculations were carried out to explore the electronic structures of these species and to predict and assign their electronic spectra.  相似文献   

10.
The synthesis of a series of (fluoroalkyl)phosphine complexes of nickel is reported. Treatment of (cod)2Ni with dfepe (dfepe=(C2F5)2PCH2CH2P(C2F5)2) yields (dfepe)Ni(cod) (1), which has been structurally characterized. Treatment of 1 with CO or bipy results in the formation of (dfepe)Ni(CO)2 (2) and (dfepe)Ni(bipy) (3), respectively. Addition of excess dfepe to 1 results in incomplete cod displacement to form (dfepe)2Ni (4). The homoleptic complex 4 may be independently prepared in high yield by reduction of (acac)2Ni with (iBu)3Al in the presence of butadiene and excess dfepe. Solvation of (dfepe)Ni(cod) in acetonitrile gives a new complex tentatively identified as (dfepe)Ni(MeCN)2 (6), whereas dissolution of (dfepe)2Ni in acetonitrile leads to a mixture of 6 and the partial displacement product (dfepe)(η1-dfepe)Ni(MeCN) (5). In contrast to (R3P)4Ni(0) phosphine and phosphite complexes, which undergo protonation by strong anhydrous acids such as HCl, H2SO4 and CF3CO2H to give (R3P)4Ni(H)+ products, Treatment of (dfepe)2Ni with neat CF3CO2H or excess HOTf in dichloromethane gave no spectroscopic evidence for (dfepe)2Ni(H)+. Exposure for extended periods leads to dfepe loss and decomposition to Ni(II) products. The synthesis of the first cobalt complex of dfepe, (dfepe)Co(CO)2H, is also reported.  相似文献   

11.
Sung KM  Holm RH 《Inorganic chemistry》2001,40(18):4518-4525
Structurally characterized tungstoenzymes contain mononuclear active sites in which tungsten is coordinated by two pterin-dithiolene ligands and one or two additional ligands that have not been identified. In this and prior investigations (Sung, K.-M.; Holm, R. H. Inorg. Chem. 2000, 39, 1275; J. Am. Chem. Soc. 2001, 123, 1931), stable coordination units of bis(dithiolene)tungsten(IV,V,VI) complexes potentially related to enzyme sites have been sought by exploratory synthesis. In this work, additional members of the sets [WL(S2C2Me2)2](2-,-) and [WLL'(S2C2Me2)2](2-,-) have been prepared and structurally characterized. Tungsten(IV) complexes obtained by substitution are carbonyl displacement products of [W(CO)2(S2C2Me2)2] and include those with the groups W(IV)S (4), W(IV)(O2CPh) (5), and W(IV)(2-AdQ)(CO) (Q = S (6), Se (7); Ad = adamantyl). Those obtained by oxidation reactions contain the groups W(V)O (9), W(V)(QPh)2 (Q = S (10), Se (11)), W(VI)S(OPh) (12), and W(VI)O2 (14). The latter two complexes were obtained from W(IV) precursors using sulfur and oxygen atom transfer reactions, respectively. Complexes 4 and 9 are square pyramidal; 6, 7, 10, and 11 are distorted trigonal prismatic with cis ligands LL'; and 12 and 14 are distorted octahedral. Complexes 4, 10, and 11 support three-membered electron transfer series. Attempts to oxidize 4 to the W(V)S complex results in the formation of binuclear [W2(mu2-S)2(S2C2Me2)4](2-) having distorted octahedral coordination. The 21 known functional groups WL and WLL' in mononuclear bis(dithiolene) complexes prepared in this and prior investigations are tabulated. Of those with physiological-type ligands, it remains to be seen which (if any) of these ligation modes are displayed by enzyme sites.  相似文献   

12.
The compounds [Cp(2)M(S(2)C(2)(H)R)] (M = Mo or W; R = phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl or quinoxalin-2-yl) and [Cp(2)Mo(S(2)C(2)(Me)(pyridin-2-yl)] have been prepared by a facile and general route for the synthesis of dithiolene complexes, viz. the reaction of [Cp(2)MCl(2)] (M = Mo or W) with the dithiolene pro-ligand generated by reacting the corresponding 4-(R)-1,3-dithiol-2-one with CsOH. These Mo compounds were reported previously (Hsu et al., Inorg. Chem. 1996, 35, 4743); however, the preparative method employed herein is more versatile and generates the compounds in good yield and all of the W compounds are new. Electrochemical investigations have shown that each compound undergoes a diffusion controlled one-electron oxidation (OX(I)) and a one-electron reduction (RED(I)) process; each redox change occurs at a more positive potential for a Mo compound than for its W counterpart. The mono-cations generated by chemical or electrochemical oxidation are stable and the structures of both components of the [Cp(2)Mo(S(2)C(2)(H)R)](+)/[Cp(2)Mo(S(2)C(2)(H)R)] (R = Ph or pyridin-3-yl) redox couples have been determined by X-ray crystallography. For each redox related pair, the changes in the Mo-S, S-C and C-C bond lengths of the {MoSCCS} moiety are generally consistent with OX(I) involving the loss of an electron from a π-orbital that is Mo-S and C-S antibonding and C-C bonding in character. These results have been interpreted successfully within the framework provided by DFT calculations accomplished for [Cp(2)M(S(2)C(2)(H)Ph)](n) (M = Mo or W; n = +1, 0 or -1). The HOMO of the neutral compounds is derived mainly from the dithiolene π(3) orbital (65%); therefore, OX(I) is essentially a dithiolene-based process. The similarity of the potentials for OX(I) (ca. 30 mV) for analogous Mo and W compounds is consistent with this interpretation and the EPR spectra of each of the Mo cations show that the unpaired electron is coupled to the dithiolene proton but relatively weakly to (95,97)Mo. The DFT calculations indicate that the unpaired electron is more localised on the metal in the mono-anions than in the mono-cations. In agreement with this, the EPR spectrum of each of the Mo-containing mono-anions manifests a larger (95,97)Mo coupling (A(iso)) than observed for the corresponding mono-cation and RED(I) for a W compound is significantly (ca. 300 mV) more negative than that of its Mo counterpart. [Cp(2)W(S(2)C(2)(H)(quinoxalin-2-yl))] is anomalous; RED(I) occurs at a potential ca. 230 mV more positive than expected from that of its Mo counterpart and the EPR spectrum of the mono-anion is typical of an organic radical. DFT calculations indicate that these properties arise because the electron is added to a quinoxalin-2-yl π-orbital.  相似文献   

13.
Reaction of UCl4 with 3 or 4 mol equiv of Na2dddt (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) in THF afforded the first example of a tetrakis(dithiolene) metal compound, [Na4(THF)8U(dddt)4](infinity) (1). The red crystals of 1 are composed of infinite zigzag chains in which Na2(micro-THF)3 fragments ensure the linking of Na2(THF)5U(dddt)4 moieties; the uranium atom is in a dodecahedral environment of eight sulfur atoms. Treatment of UCl4 with 3 mol equiv of Na2dddt in pyridine gave a mixture of tris- and tetrakis(dithiolene) compounds. After addition of 18c6 (18-crown-6), only the tris(dithiolene) complex was obtained and crystallized as orange crystals of [Na(18c6)(py)2]2[U(dddt)3].2py (2.2py) in which the isolated [U(dddt)3]2- anion adopts a slightly distorted trigonal prismatic configuration. A few red crystals of the unsolvated complex 2 and the trinuclear anionic compound [Na(18c6)(py)2]3[Na{U(dddt)3}2] (3) were also obtained along with orange crystals of 2.2py. All the tris(dithiolene) compounds exhibit large folding of the dddt ligand and significant interaction between the C=C double bond and the metal center.  相似文献   

14.
Sung KM  Holm RH 《Inorganic chemistry》2000,39(6):1275-1281
Recent protein crystallographic results on tungsten enzymes and primary sequence relationships between certain molybdenum and tungsten enzymes provoke interest in the generalized bis(dithiolene) complexes [WIV(QR)(S2C2R'2)2]1- and [WVIO(QR)(S2C2R'2)2]1- (Q = O, S, Se) as minimal representations of enzyme sites. The existence and stability of W(IV) complexes have been explored by synthesis. Reaction of [W(CO)2(S2C2Me2)2] (1) with PhO- results in complete CO substitution to give [W(OPh)(S2C2Me2)2]1- (2). Reaction of 1 with PhQ- affords the monocarbonyls [W(CO)(QPh)(S2C2Me2)2]1- (Q = S (3), Se (5)). The use of sterically demanding 2,4,6-Pri3C6H2Q- also yields monocarbonyls, [W(CO)(QC6H2-2,4,6-Pri3)(S2C2Me2)2]1- (Q = S (4), Se (6)). The X-ray structures of square pyramidal 2 and trigonal prismatic 3-6 (with unidentate ligands cis) are described. The tendency to substitute one or both carbonyl ligands in 1 in the formation of [MIV(QAr)(S2C2Me2)2]1- and [MIV(CO)(QAr)(SeC2Me2)2]1- with M = Mo and W is related to the M-Q bond length and ligand steric demands. The results demonstrate a stronger binding of CO by W(IV) than Mo(IV), a behavior previously demonstrated by thermodynamic and kinetic features of zerovalent carbonyl complexes. Complexes 3-6 can be reversibly reduced to W(III) at approximately -1.5 V versus SCE. On the basis of the potential for 2(-2.07 V), monocarbonyl ligation stabilizes W(III) by approximately 500 mV. This work is part of a parallel investigation of the chemistry of bis(dithiolene)-molybdenum (Lim, B. S.; Donahue, J. P.; Holm, R. H. Inorg. Chem. 2000, 39, 263) and -tungsten complexes related to enzyme active sites.  相似文献   

15.
Two new compounds containing the possible Fe(III) spin-crossover cation, [Fe(qsal)2]+ (qsalH = N-(8-quinolyl)salicylaldimine), and nickel bis(dithiolene) anions have been synthesized. Both are 1 : 1 salts [Fe(qsal)2][Ni(dddt)2] · CH3CN · CH3OH (1) and [Fe(qsal)2][Ni(pddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate; pddt = 6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate). They have been characterized by X-ray crystal structure determination, elemental analysis, UV-Vis spectra and magnetic susceptibility measurements. The UV–Vis spectra are dominated by [Ni(L)2]? (1, L = dddt; 2, L = pddt). Magnetic studies show antiferromagnetic interaction in 1 from intermolecular S···S contacts and π–π stacking interactions, while the antiferromagnetic interaction in 2 is very weak.  相似文献   

16.
Visible light irradiation of the [(η-C6H7)Fe(η-C6H6)]+ cation (1) in CH2Cl2 in the presence of alkyl-substituted benzenes results in arene exchange forming the [(η5-C6H7)Fe(η-C6R6)]+ cations (2a–d: C6R6 is toluene, p-xylene, mesitylene, and durene). The mixed bis(arene) [(η-C6H6)Fe(η-C6R6)]2+ iron complexes (3a–d) were synthesized by hydride ion abstraction from 2a–d by [Ph3C]+. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1864–1865, September, 2007.  相似文献   

17.
The density functionals B3LYP, B3PW91, BMK, HSE06, LC-ωPBE, M05, M06, O3LYP, TPSS, ω-B97X, and ω-B97XD are used to optimize key transition states and intermediates for ethylene addition to Ni(edt)(2) (edt = S(2)C(2)H(2)). The efficacy of the basis sets 6-31G**, 6-31++G**, cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ is also examined. The geometric parameters optimized with different basis sets and density functionals are similar and agree well with experimental values. The ω-B97XD functional gives relative energies closest to those from CCSD, while M06 and HSE06 yield results close to those from CCSD(T). CASSCF and CASSCF-PT2 calculation results are also given. Variation of the relative energies from different density functionals appears to arise, in part, from the multireference character of this system, as confirmed by the T1 diagnostic and CASSCF calculations.  相似文献   

18.
Copper(I) complexes of bis(phosphine) monoxide ligands, bis(diphenylphosphino)ethane monoxide (dppeo) and bis(diphenylphosphino)methane monoxide (dppmo) have been prepared and characterized. One of the complexes with dppeo was characterized by X-ray crystal structure analysis confirming Cu(I) coordination to hard and soft donors. The stability of these complexes in solution was probed via spectroscopic and electrochemical studies. Copper(I) is more readily oxidized in the presence of the hard O donor ligands. In solution, they readily exchange the hard donor O, for soft ligands. Although copper(I) prefers soft ligands and is more stable towards oxidation in their presence, it coordinates to hard donors when there is electrostatic or an entropy driven advantage.  相似文献   

19.
Unexpected N,N-coordination of the potentially tridentate N,P,N-ligand bis(2-oxazolin-2,5,5-trimethyl)phenylphosphine occurs in Co(II) and Fe(II) complexes, in contrast to the P,N- or N,P,N-coordination modes observed in Pd(II) complexes; this leads to the formation of unprecedented eight-membered ring chelates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号