首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
One-pot tandem synthesis was developed for substituted quinolines (in up to 97% yields) involving a selective catalytic oxidation of primary amines to aldehydes and their condensation with arylamines under the action of a dispersion of Fe(CrO2)2 and water solution of H2O2 at room temperature. The stage of catalytic oxidation of alcohols was accelerated by photoactivation. A presumable mechanism of the photoactivated tandem synthesis of 2-methylquinoline was suggested. Catalyst Fe(CrO2)2 was prepared by photochemical synthesis.  相似文献   

2.
The methods of synthesis of composite membrane catalysts based on Mо2C and Al2O3 support by a sol–gel method were developed. The samples of membrane catalysts with different architectures were developed. The difference in the catalytic activity of membrane catalysts in carbon dioxide conversion of methane depending on the porous structure and morphology of the catalytic layer was studied.  相似文献   

3.
In this work, the condensation of aromatic aldehydes with different two-substituted aniline catalyzed by NH3(CH2)5NH3BiCl5 as heterogeneous and recyclable catalyst was reported. It was demonstrated that NH3(CH2)5NH3BiCl5 can act as an efficient and active catalyst and is reusable for six runs without a significant loss of their catalytic activity. Simple preparation of the catalyst, high catalytic activity and good reusability are noteworthy advantages of this catalytic system in the synthesis of benzoxazole, benzimidazole and benzothiazole heterocycles at room temperature under solvent-free conditions.  相似文献   

4.
The present paper describes the synthesis of magnetically nanoparticles of zirconocene-modified magnetite, Fe3O4@APTMS@ZrCp2, as a new generation in heterogeneous and reusable type nanocatalysts. The prepared zirconocene nanocomposite was characterized using FT-IR, SEM, XRD, EDX, AGFM, ICP–OES, TGA and BET analyses. The core–shell nanocatalyst exhibited an excellent catalytic activity towards glycerol reduction of various nitro compounds to the corresponding amines. All reactions were carried out in H2O at room temperature (40–90 min) to afford amines in high to excellent yields. Reusability of the core–shell zirconocene was examined 5 times without significant loss of its catalytic activity.  相似文献   

5.
The main aim of this work is to discriminate the closely related adsorption and catalytic degradation processes that occur during a photocatalytic reaction. Very high-surface-area TiO2 and Pd-doped TiO2 were synthesized by microwave-assisted hydrothermal synthesis and used for degradation of methylene blue as a model pollutant dye. Thorough structural, morphological, and surface analyses of the synthesized catalysts were conducted to investigate key material properties that influence adsorption and catalytic performance. The adsorption capacity of the catalysts was determined by fitting adsorption data using the Langmuir isotherm model, and the photocatalytic activity of the synthesized samples was evaluated by periodically measuring the concentration of methylene blue as it was photocatalytically degraded under ultraviolet (UV) light. The results indicated that noble-metal incorporation compromised adsorption but favored catalytic performance.  相似文献   

6.
The effect the means of synthesis have on the texture, phase composition, redox properties, and catalytic activity of binary oxide systems with the composition Ce0.5Zr0.5O2 are studied. The obtained samples are characterized via BET, SEM, DTA, XRD, and Raman spectroscopy. A comparative analysis is performed of the physicochemical properties of biomorphic systems Ce0.5Zr0.5O2 obtained using wood sawdust and cellulose as templates and the properties of binary oxides of the same composition obtained by template-free means. The catalytic properties of the obtained oxide systems Ce0.5Zr0.5O2 are studied in the reaction of carbon black oxidation. It is shown that the texture of the oxide depends on the means of synthesis. When biotemplates are used, fragile porous systems form from thin binary oxide plates containing micro-, meso-, and macropores. Oxide obtained via coprecipitation consists of dense agglomerates with pores around 30 Å in size. In supercritical water, nanoparticles of metal oxide form that are loosely agglomerated. The intermediate spaces between them act as pores more than 100 Å in size. A system of single-phase pseudocubic modification is obtained using a cellulose template. The crystal lattices of all the obtained systems contain a great many defects. It is shown that the system prepared via synthesis in supercritical water has the best oxygen-exchange properties. A comparative analysis is performed of the effect the physicochemical properties of the samples have on their activity in the catalytic oxidation of carbon black.  相似文献   

7.
The synthesis of cyclic carbonates or dimethyl carbonate (DMC) using CO2 as a building block is a very interesting topic. In this work, we found that the metalorganic framework-5 (MOF-5)/KI was an active and a selective catalytic system for the synthesis of cyclic carbonates from CO2 and epoxides, and MOF-5/KI/K2CO3 was efficient for the preparation of DMC from CO2, propylene, and methanol by a sequential route. The impacts of temperature, pressure, and reaction time length on the reactions were investigated, and the mechanism of the reactions is proposed on the basis of the experimental results.  相似文献   

8.
Dihydropyridines were synthesized in good to excellent yields in the presence of NaNO2, Al(HSO4)3, and a catalytic amount of NaBr at room temperature. Low cost, the use of available reagents, simple methodology, and easy work-up procedure make this method attractive for organic synthesis.  相似文献   

9.
Catalytic systems based on the Ni3Al intermetallic compound and modified with chromium and tungsten were studied in carbon dioxide reforming of methane. The catalysts were prepared by the self-propagating high-temperature synthesis method. The phase composition of the catalytic systems was determined by X-ray diffraction. The catalytic activity of the samples increased as the concentration of dopants decreased and was maximum at 2 wt % Cr and W. Scanning electron microscopy studies showed that the catalytic system underwent substantial structural changes responsible for catalytic activity loss with time.  相似文献   

10.
Higher alcohol has been considered as a potential fuel additive. Higher alcohol, including C2–C4 alcohol was synthesized by catalytic conversion of syngas (with a ratio of CO/H2?=?1) derived from natural gas over modified Cu/ZnO/Al2O3 catalyst. Modified Cu/ZnO/Al2O3 catalysts promoted by alkali metal (Li) for higher alcohol synthesis (HAS) were prepared at different pH (6, 6.5, 7, 8, and 9) by co-precipitation to control Cu surface area and characterized by N2 physisorption, XRD, SEM, H2-TPR and TPD. The HAS reaction was carried out under a pressure of 45 bar, GHSV of 4000 h?1, ratio of H2/CO?=?1, and temperature ranges of 240 and 280 °C. It was found that the malachite phase of copper causes the size of copper to be small, which is suitable for methanol synthesis. Methanol and HAS share a common catalytic active site and intermediate. It was also found that the productivity to higher alcohol was correlated with Cu surface area.  相似文献   

11.
In the present paper, L-phenyl alanine has been successfully linked on the surface of magnetic nanoparticles and has been characterized by FT-IR, XRD, SEM, EDS, TGA, and VSM techniques. This new catalyst was employed for one-pot synthesis of chromenes through the reaction of aldehydes, 4-hydroxycoumarin, and 2-hydroxynaphthalene-1,4-dione. Significant features of this method are short reaction time, excellent yields, use of green method, and the use of an effective and novel catalyst that could be recovered and reused several times without loss of its catalytic activity.  相似文献   

12.
Porous CeO2 nanorod has been used as efficient and recyclable heterogeneous catalyst for the synthesis of highly functionalized imino-pyrrolidine-thiones via the reaction of aromatic aldehyde (especially one bearing an electron-donating group), malononitrile, isocyanide and unactivated weakly acidic heterocyclic thiophenol. The high catalytic efficiency of porous CeO2 nanorod in this reaction was discussed preliminarily based on their morphology and structure.  相似文献   

13.
A green, reliable synthetic method and highly efficient one-pot three-component synthesis of 2,4,5-trisubstituted imidazoles from 1,2-diketones, aldehydes and ammonium acetate in the presence of recyclable magnetic graphitic carbon nitride nanocomposite (Fe3O4@g-C3N4) has been developed. Various imidazole derivatives were obtained in moderate to excellent yields and high purity after recrystallization from ethanol. Interestingly, the low-cost Fe3O4@g-C3N4 a nontoxic and inexpensive catalyst showed excellent recyclability using an external magnet without loss of parent catalytic activity even after ten cycles and its provides new opportunities for the truly environmental friendliness methodology.  相似文献   

14.
A novel nanomagnetic composite heteropolyacid immobilized chitosan/Fe3O4 was prepared via a facile one-pot synthetic approach. This magnetically recoverable nanocatalyst, H3PMo12O40/chitosan/Fe3O4 (PMo/chit/Fe3O4), was fully characterized by XRD, FTIR, SEM and EDX analysis methods. A rapid, efficient and the chemoselective synthesis of different pyrano-pyrazole derivatives was achieved in excellent yields via a one-pot four-component reaction in the presence of catalytic amount of PMo/Chit/Fe3O4.  相似文献   

15.
This study is aimed at proposing a practical green procedure for the synthesis of octahydroquinazolinone derivatives using benzaldehyde, dimedone and urea under microwave irradiation in water. A surfactant type polyoxometalate-based organic–inorganic hybrid was able to efficiently catalyze this synthesis. The catalyst was prepared and characterized by Fourier transform infrared, UV–Vis, X-ray diffraction, and thermogravimetric analysis. The employed catalyst exerted a synergistic effect; the anion part acted as a catalyst while the cation part acted as a surfactant in order to increase the concentration of organic reactants in water. The main advantage of this method is its remarkable yield in short reaction periods, which results in the rendering of products with high purity. Moreover, this heterocatalyst is capable of being easily recovered and reused several times. The influences of reaction conditions were studied systematically, and a possible catalysis mechanism was proposed for understanding the highly efficient heterogeneous catalytic behavior.  相似文献   

16.
Copper or iron supported on commercially available oxides, such as γ-Al2O3, TiO2 (anatase) and monoclinic tetragonal ZrO2 (mt-ZrO2) were tested as catalysts for selective catalytic oxidation of ammonia into nitrogen and water vapour (NH3-SCO) in the low temperature range. Different commercial oxides were used in this study to determine the influence of the specific surface area, acidic nature of the support and crystalline phases as well as of the type of species and aggregation state of transition metals on the catalytic performance in selective ammonia oxidation. Copper modified oxide supports were found to be more active and selective to nitrogen than catalysts impregnated with iron. Activities of both transition metal modified samples decreased in the following order: mt-ZrO2, TiO2 (anatase), γ-Al2O3. Quantitative total ammonia conversion was achieved with the Cu/ZrO2 catalytic system at 400°C. Characterisation techniques, e.g. H2-temperature programmed reduction, UV-VIS-diffuse reflectance spectroscopy, suggest that easily reducible copper oxide species are important in achieving high catalytic performances at low temperatures.  相似文献   

17.
An efficient procedure has been developed for the synthesis of 4-substituted 2,6-bis(fluoroalkyl)-2,6-dihydroxytetrahydro-2H-pyran-3,5-dicarboxylates by reactions of aldehydes with fluorine-containing β-oxo esters in heterogeneous catalytic system 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]-K2CO3 activated by ultrasound. The system retains its catalytic activity for three reaction cycles.  相似文献   

18.
A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.  相似文献   

19.
Catalytic systems based on the Ni3Al intermetallic compound and modified with niobium and chromium were studied in methane reforming with carbon dioxide. The catalysts were prepared under self-propagating high-temperature synthesis conditions. The phase composition of the catalytic systems was studied by X-ray diffraction. The catalytic activity of the samples increased as the concentration of modifying admixtures decreased and was maximum at 2% concentrations of Nb and Cr. The scanning electron microscopy data showed that the catalytic systems experienced substantial structural changes, which caused catalytic activity loss with time.  相似文献   

20.
Co3O4 crystallites with particle, plate-, tube-, rod- and sheet-like morphologies were successfully prepared by the calcination of the corresponding precursors synthesized via a precipitation or hydrothermal procedure. The morphologies of the precursors and Co3O4 nano-tubes were detected by field emission scanning electron microscopy (FE-SEM). The as-obtained Co3O4 samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and special surface area measurement (BET). The electrocatalytic activity of p-nitrophenol reduction with the Co3O4 products decorated on a glassy carbon electrode (GCE) was tested, respectively, using cyclic voltammetry (CV) in a basic solution. The results indicated that p-nitrophenol was reduced with higher current density but almost at a constant potential on the Co3O4/GCE in contrast with that on a bare GCE at the same conditions. The highly catalytic activity of the as-prepared Co3O4 in a basic solution suggested their wide applications in environmental treatment or organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号