首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.  相似文献   

2.
Zhi Liang 《Molecular physics》2013,111(10):1285-1295
The density, isochoric heat capacity, shear viscosity and thermal conductivity of CO2 gas in the pressure range of 1–50 atm and 300 K are calculated based on a five-centre potential model obtained from ab initio calculations of the intermolecular potential of a CO2 dimer. The quantum effects of the intramolecular motion are included in a model by the Monte Carlo (MC) Method. Without using any experimental data, the present model achieves excellent agreements between the calculated thermophysical properties and experimental data for all simulated CO2 densities except the highest one at 135 kg/m3 (3 mol/L). The contributions of potential to the thermophysical properties of the moderate dense CO2 gas and their dependence on density are investigated in detail.  相似文献   

3.
李世娜  刘永 《物理学报》2010,59(10):6882-6888
利用基于密度泛函理论的第一性原理全势线性缀加平面波方法,研究了立方反ReO3结构Cu3N在零温(0K)零压下的平衡晶格常数、体弹模量及其对压强的一阶导数,计算结果与其他实验及理论结果基本相符.同时得出Cu3N的弹性常数,Poisson比等,并分析出Cu3N在零温零压下是稳定的.通过准谐Debye模型计算Cu3N的热力学性质,得到了Cu3N的晶格常数、等压比热容、等容比热容、热胀系数与温度和压强之间的关系,同时计算出不同温度不同压强下其体弹模量及Debye温度的值。  相似文献   

4.
Structural stability and mechanical and thermodynamic properties of the orthorhombic and trigonal MgSiN2 polymorphs (or-MgSiN2 and tr-MgSiN2) were investigated through density functional theory and quasi-harmonic Debye model (QHDM). Our calculations show that or-MgSiN2 is energetically the stable polymorph at low pressure, in agreement with previous experimental and theoretical study. Under pressure, a crystallographic transition from the orthorhombic structure to the trigonal one occurs around 25, 17.45 and 19.05 GPa as obtained from the generalized gradient approximation of Perdew-Wang (GGA-PW91), the generalized gradient approximation parameterized recently by Perdew et al (GGA-PBEsol) and the local density approximation developed by Ceperley and Alder and parameterized by Perdew and Zunger (LDA-CAPZ), respectively. Single-crystalline and polycrystalline elastic constants and related properties, namely Vickers hardness, acoustic Grüneisen parameter, minimum thermal conductivity, isotropic sound velocities and Debye temperature, were numerically estimated for both or-MgSiN2 and tr-MgSiN2. We have showed that the hardness of tr-MgSiN2 is comparable to that of the harder materials like c-BN and B6O. Temperature and pressure dependencies of volume, bulk modulus, thermal expansion, Grüneisen parameter, heat capacities and Debye temperature were investigated using QHDM.  相似文献   

5.
A. Bouhemadou 《哲学杂志》2013,93(12):1623-1638
The structural, elastic, electronic and thermal properties of M2SbP (M = Ti, Zr and Hf) were studied by means of a pseudo-potential plane-wave method based on the density functional theory within both the local density approximation and the generalised gradient approximation. The optimised zero-pressure geometrical parameters, i.e. the two unit cell lengths (a, c) and the internal coordinate (z), were in good agreement with available experimental and theoretical data. The effect of high pressure, up to 20 GPa, on the lattice constants shows that the contractions along the a-axis were higher than along c-axis. The anisotropic independent elastic constants were calculated using the static finite strain technique. Numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature for ideal polycrystalline M2SbP aggregates were performed in the framework of the Voigt–Reuss–Hill approximation. The calculated band structures show that all studied materials are electrical conductors. Analysis of the atomic site projected densities showed that the bonding is of covalent–ionic nature with the presence of metallic character. The density of states at the Fermi level is dictated by the transition metal d–d bands; the Sb element has little effect. Thermal effects on some macroscopic properties of M2SbP were predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the volume expansion coefficient, heat capacity and Debye temperature with pressure and temperature in the ranges 0–50 GPa and 0–2000 K were obtained successfully.  相似文献   

6.
Using Vanderbilt-type plane-wave ultrasoft pseudopotentials within the generalized gradient approximation(GGA) in the frame of density functional theory(DFT),we have investigated the crystal structures,elastic,and thermodynamic properties for Ti2SC under high temperature and high pressure.The calculated pressure dependence of the lattice volume is in excellent agreement with the experimental results.The calculated structural parameter of the Ti atom experienced a subtle increase with applied pressures and the increase suspended under higher pressures.The elastic constants calculations demonstrated that the crystal lattice is still stable up to 200 GPa.Investigations on the elastic properties show that the c axis is stiffer than the a axis,which is consistent with the larger longitudinal elastic constants(C 33,C 11) relative to transverse ones(C 44,C 12,C 13).Study on Poisson's ratio confirmed that the higher ionic or weaker covalent contribution in intra-atomic bonding for Ti2SC should be assumed and the nature of ionic increased with pressure.The ratio(B/G) of bulk(B) and shear(G) moduli as well as B/C 44 demonstrated the brittleness of Ti2SC at ambient conditions and the brittleness decreased with pressure.Moreover,the isothermal and adiabatic bulk moduli displayed opposite temperature dependence under different pressures.Again,we observed that the Debye temperature and Gru篓neisen parameter show weak temperature dependence relative to the thermal expansion coefficient,entropy,and heat capacity,from which the pressure effects are clearly seen.  相似文献   

7.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

8.
运用基于密度泛函理论第一性原理方法研究了MnPd从立方顺磁到四方反铁磁的相变以及其弹性性质和热力学性质等.结果表明:MnPd合金顺磁立方B2结构在施加了四方应变后,结构不稳定,会发生结构相变形成四方顺磁结构.四方顺磁相弹性稳定,然而在考虑了磁性后,反铁磁四方相比四方顺磁相能量更低,而且弹性和动力学都稳定,说明反铁磁四方相是MnPd的低温结构.从而得出MnPd合金的相变路径为两步:先发生结构相变从顺磁B2立方结构转变为顺磁四方相,再由磁性诱发相变形成反铁磁四方结构.通过准谐近似得到了摩尔比热容,德拜温度等热力学性质.  相似文献   

9.
The structural parameters, elastic constants, thermodynamic properties of Imm2-BN under high pressure were calculated via the density functional theory in combination with quasi-harmonic Debye approach. The results showed that the pressure has the significant effect on the equilibrium lattice parameters, elastic and thermodynamic properties of Imm2-BN. The obtained ground state structural parameters are in good agreement with previous theoretical results. The elastic constants, elastic modulus, and elastic anisotropy were determined in the pressure range of 0–90?GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is evaluated and the elastic anisotropy of the Imm2-BN up to 90?GPa is studied in detail. Moreover, the pressure and temperature dependence of thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameter are predicted in a wide pressure (0–90?GPa) and temperature (0–1600?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of Imm2-BN.  相似文献   

10.
熊青云  沈启霞  李蕊子  申江  田付阳 《中国物理 B》2016,25(2):26501-026501
The structures under different pressures, elastic properties, electronic structures and lattice vibrations of the X_2N_2O(X = C, Si, Ge) compounds are investigated by using the first-principle method. Based on the phonon density of state,the thermodynamic properties of the present compounds are studied under different pressures and at different temperatures. The structural parameters including the bond lengths and bond angles are in agreement with available experimental measurements and theoretical calculations. We employ the elastic theory to calculate the nine independent elastic constants(C_(ij)) and the derived elastic moduli(B, G, E, v). Results indicate that these X_2N_2O(X = C, Si, Ge) compounds are mechanically stable and show the brittle behaviors. The electronic properties of the present compounds are analyzed by using the band structure and density of states. The phonon dispersion calculations imply that the present compounds are dynamically stable. Based on the quasi-harmonic approximation, the calculations of the specific heat indicate that the temperature in a range of 0 K–1500 K and pressure in a range of 0 GPa–40 GPa have a large effect on the thermal quantities of Ge_2N_2O,compared with on those of the C_2N_2O and Si_2N_2O compounds.  相似文献   

11.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

12.
本文利用密度泛函理论研究了高压下bcc结构钨的弹性和热力学性质,计算得到钨的晶格常数、体弹模量以及其对压强的一阶偏导与实验值符合较好;在常压下弹性常数计算值与实验值符合较好的基础上,预测了其高压数据.针对钨的固相结构稳定性问题,根据力学稳定判断标准得到0~600 GPa范围内bcc结构是力学稳定的.此外,通过体模量和剪切模量的计算得到bcc结构钨在压力低于600 GPa时的力学性能表现为韧性.最后,基于准简谐德拜模型,成功预测了钨的热膨胀系数、等压热容、等容热容和熵随着压强和温度的变化关系,为钨及其合金的进一步设计及应用提供参考.  相似文献   

13.
R. Holomb  V. Mitsa  S. Akyuz  E. Akalin 《哲学杂志》2013,93(19):2549-2562
Ab initio DFT calculations were performed on GenSem nanoclusters (n?=?2, 3, 5, 6, 12; m?=?6–9, 14, 16, 30) that represent the local structure of GeSe2 glass and on some ‘defect’ GenSem clusters that are thought to be related to the inhomogeneity of the structure at the nanoscale. The optimal geometries, total energies and their derivatives as well as the electronic properties of GenSem nanoclusters were calculated using traditional DFT method. In addition, the TD-DFT method has been applied to calculate the electronic band gaps of the clusters. The calculated physico-chemical properties of GenSem nanoclusters and their couplings with the local-and medium-range order structure formations in GeSe2 glass are analysed and discussed.  相似文献   

14.
本文利用密度泛函理论研究了高压下bcc结构钨的弹性和热力学性质,计算得到钨的晶格常数、体弹模量以及其对压强的一阶偏导与实验值符合较好;在常压下弹性常数计算值与实验值符合较好的基础上,预测了其高压数据.针对钨的固相结构稳定性问题,根据力学稳定判断标准得到0~600 GPa范围内bcc结构是力学稳定的.此外,通过体模量和剪切模量的计算得到bcc结构钨在压力低于600 GPa时的力学性能表现为韧性.最后,基于准简谐德拜模型,成功预测了钨的热膨胀系数、等压热容、等容热容和熵随着压强和温度的变化关系,为钨及其合金的进一步设计及应用提供参考.  相似文献   

15.
The elastic, electronic, magnetic and optical properties of filled skutterudite ROs4P12 (R = Sm, Eu and Gd) have been studied by first principles calculation. The full-potential linearized augmented plane wave method based on density functional theory was employed. For the exchange-correlation potential, local spin density approximation + Coulomb repulsion (LSDA + U) is used to treat the f-electrons more effectively. The numerical values of the elastic parameters are estimated in the framework of the Voigt–Reuss–Hill approximation. OsP-based filled skutterudite with localized 4f and 5d-electrons shows dense energy bands near Fermi energy originating from rare earth and Os atoms. The dense density of states near EF reveals that these compounds are suitable for thermoelectric application. Optical constants including dielectric function, optical reflectivity and refractive index are calculated for photon energy radiation up to 12 eV. The exchange-splitting of R-4f states were analyzed to explain the ferromagnetic behavior of ROs4P12.  相似文献   

16.
The structural, elastic, magnetic and electronic properties of the layered tetragonal phase KCo2Se2 have been examined in details by means of the first-principles calculations and analyzed in comparison with the isostructural KFe2Se2 as the parent phase for the newest group of ternary superconducting iron-chalcogenide materials. Our data show that KCo2Se2 should be characterized as a quasi-two-dimensional ferromagnetic metal with highly anisotropic inter-atomic bonding owing to mixed ionic, covalent, and metallic contributions inside [Co2Se2] blocks, and with ionic bonding between the adjacent [Co2Se2] blocks and K sheets. This material should behave in a brittle manner, adopt enhanced elastic anisotropy rather in compressibility than in shear, and should show very low hardness.  相似文献   

17.
The Raman (3200‐30 cm−1) and/or infrared spectra (3500 to 400 cm−1) of gaseous, liquid and solid dimethylsilylisocyanate, (CH3)2 Si(H)NCO, have been recorded. The MP2(full) calculations, employing a variety of basis sets with and without diffusion functions, have been used to predict the structural parameters, conformational stability, vibrational fundamental wavenumbers, Raman activities, depolarization values and infrared intensities to support the vibrational assignment. The low wavenumber Raman spectrum of the gas with a significant number of Q‐branches for the SiNC(O) bend is consistent with an essentially linear SiNCO moiety. The ab initio calculations supported this conclusion as all possible orientations of the NCO moiety lead to nearly the same energy. This result is at variance with the conclusion from the electron diffraction study that the heavy atom skeleton was bent with an angle of 152(5)° with one stable cis conformer. It is believed that this reported angle difference from 180° is due to the shrinkage effect. The SiH distance of 1.486 Å has been obtained from the isolated SiH stretching wavenumber. From the adjustment of the ab initio MP2(full)/6‐311+G(d,p) predicted structural parameters, a proposed structure is reported, which is expected to give rotational constants within a few megahertz of the actual ones. These experimental and theoretical results are compared with the corresponding quantities of similar molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.  相似文献   

19.
β-PtO2 is a useful transition metal dioxide, but its fundamental thermodynamic and elastic properties remain unexplored. Using first-principles calculations, we systematically studied the structure, phonon, thermodynamic and elastic properties of β-PtO2. The lattice dynamics and structural stability of β-PtO2 under pressure were studied using the phonon spectra and vibrational density of states. The vibrational frequencies of the optical modes of β-PtO2 increase with elevating pressure; this result is comparable with the available experimental data. Then, the heat capacities and their pressure responses were determined based on the phonon calculations. The pressure dependence of the Debye temperature was studied, and the results were compared in two distinct aspects. The elastic moduli of β-PtO2 were estimated through the Voigt–Reuss–Hill approximation. The bulk modulus of β-PtO2 increases linearly with pressure, but the shear modulus is nearly independent of pressure. Our study revealed that the elastic stiffness coefficients C44, C55 and C66 play a primary role in the slow variation of the shear modulus.  相似文献   

20.
We have studied structural, elastic, thermodynamic (Debye temperature and melting temperature), and lattice dynamical (phonon dispersion curves, heat capacity, and entropy) properties of CaX via ab initio calculations within the local density approximations. The results are compared with the available experimental and other theoretical data, and the agreement is, generally, quite good. We also predict the temperature and/or pressure-dependent behaviors of some mechanical, lattice dynamical, and thermodynamic properties for the same compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号