首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Micrometer-sized Fe3O4 particles and nano-sized gold particles were first synthesized by methods of self-aggregation of surface-chemically modified Fe3O4 nanoparticles and citrate reduction of the Au3 to Au0, respectively. Interaction between these two types of particles resulted in the assembly of nano-sized gold particles on the surface of the micrometer-sized Fe3O4 particles, forming an assembled structure with the Fe3O4 core particles around which are attached nano-sized gold parti- cles. The Fe3O4/Au structure is named GoldMag particles with assembled structure. The synthetic process, structure, and magnetic property of the GoldMag particles were analyzed. GoldMag particles with assembled structure have an irregular shape, rough surface with a diameter of 2―3 μm. These particles exhibit the superparamagnetic property with saturated magnetization of 41 A·m2/kg. In a single step, antibodies could be readily immobilized onto the surface of the particles with a high binding capacity. The GoldMag particles can be used as a novel carrier in immunoassays. The maximum quantity of human IgG immobilized onto GoldMag particles was 330 μg/mg. In order to validate the quality of the GoldMag particles as immunoassay carriers, an immunoassay system was used. The relative amount of immobilized human IgG was measured by HRP-labeled anti human IgG. The coefficient of variation within parallel samples of each group was below 6% and the coefficient of variation of means between five groups carried out separately was below 7%. Based on the sandwich method, the Hepatitis B surface antigen (HBsAg) and interleukin-8 (IL-8) were also analyzed by qualitative and quantitative detection, respectively. The result indicated that the GoldMag particles with assembled structure were an ideal carrier in immunoassay.  相似文献   

2.
Mesoporous TiO(2) materials with various pore-size distributions were synthesized by using diblock copolymers via a sol-gel process in aqueous solution. The properties of these materials were characterized by FE-SEM, HR-TEM, XRD, DRS, BET, and BJH analysis. All particles have spherical morphology with a diameter range of 1-3 mum. The mesoporous TiO(2) materials calcined at 400 degrees C were found to have different specific surface areas - 186, 210, and 192 m(2) g(-1) - and average pore sizes depending on the type of diblock copolymer-5.1, 6.1, and 6.4 nm-and their crystallite sizes were found to be 8.1, 8.3, and 8.8 nm. The photocatalytic activity of each sample was investigated by measuring the photodecomposition of methylene blue (MB), and the small crystallite size, large surface area, and small pore size were found to exhibit better photocatalytic activities. In addition, the photocatalytic activities of all the mesoporous TiO(2) materials were found to be better than that of commercial TiO(2).  相似文献   

3.
The influence of particle size on the electrophoretic mobility of negatively charged latex particles was examined by a comparison between theory and experiment. Theoretical values for the dependence of the mobility on electrolyte concentration were calculated by a modified White–O’Brian model (Hidalgo-Alvarez et al., Adv. Coll. Interf. Sci. 67 (1996) 1) which enables the consistent calculation of the zeta (ζ) potential. For three polystyrene latexes of different size but similar surface charge density the measured mobilities increased with increasing radius for the electrolyte range under consideration. The theoretical calcalations resulted in a qualitatively correct prediction of the experimental data. The experimental comparison of the mobilities of hydrophobic and hydrophilic particles of similar size and surface charge density lead to the conclusion that hydrophilic surfaces lower the electrophoretic mobility. The same theoretical model was able to describe correctly this observed behavior by assuming a greater distance of the plane of shear. The effect of a spatial distribution of the charges was examined by characterizing an electrosterically stabilized latex. Contrary to all standard latices with surface charges this latex didn't show any mobility maximum as a function of electrolyte concentration.  相似文献   

4.
Monolithic porous silica and carbon structures have been obtained by the synthesis of silica inside the aqueous phase of a sponge-like Swollen Liquid Crystal, and the parallel preparation of carbon replica.  相似文献   

5.
A mesoporous solid with crystalline walls and an ordered pore structure exhibiting a bimodal pore size distribution (3.3 and 11 nm diameter pores) has been synthesized. Previous attempts to synthesize solids with large ordered mesopores by hard templating focused on the preparation of templates with thick walls (the thick walls become the pores in the target materials), something that has proved difficult to achieve. Here the large pores (11 nm) do not depend on the synthesis of a template with thick walls but instead on controlling the microporous bridging between the two sets of mesopores in the KIT-6 template. Such control determines the relative proportion of the two pore sizes. The wall thickness of the 3D cubic NiO mesopore has also been varied. Preliminary magnetic characterization indicates the freezing of uncompensated moments or blocking of superparamagnetism.  相似文献   

6.
以井式加热炉(φ150mm×300mm) 为主体模拟工业炼焦过程,借助压汞法考察了焦化过程中不同焦化温度、炉内径向不同位置半焦的孔隙结构参数的变化。结果表明,半焦中存在丰富的大孔和中孔,孔隙率和比表面积随焦化温度、径向位置呈规律性变化;相同焦化温度下,由边缘沿中心方向先减少后增加;相同位置下,孔隙率随着温度的升高逐渐变小,至900℃后孔隙率略有增大,比表面积在900℃左右达到最小值后随温度升高又迅速增加;此外,半焦孔隙以孔径大于5.0μm的孔为主,孔径小于0.4μm、介于0.4μm~5.0μm和大于5.0μm的孔累积孔隙分率分别约占总孔体积分数的10%、20%和70%,孔径分布的高峰处于60 μm~150μm。SEM分析显示,焦柱中存在丰富的大孔,且边缘和中心处孔径较大。  相似文献   

7.
Polyethersulfone (PES) hollow fiber membranes for kidney dialysis application were prepared by the dry-jet wet-spinning method. A dual-coagulation bath technology was first time employed for fabricating the kidney dialysis membranes with a tight inner skin and loose outer supporting layer structure. A weak coagulant isopropanol (IPA) was served as the first external coagulation bath, while water as the second bath. Experiments demonstrate their advantages of better controlling both inner and outer skin morphology. The as-spun fibers have a higher mean effective pore size (μp), pure water permeation flux (PWP) and molecular weight cut-off (MWCO) with an increase in N-methyl-2-pyrrolidone (NMP) percentage in bore fluid (i.e., internal coagulant). After being treated in 8000 ppm NaOCl solution for 1 day, fibers show larger pore sizes and porosity in both inner and outer surfaces, and thinner inner and outer layers than their as-spun counterparts. Among them, the bleached fibers spun with 50 wt.% NMP in bore fluid have the MWCO (43 kDa) and PWP (40 × 10−5 L m−2 Pa−1 h−1) suitable for kidney dialysis application. Based on SEM observations and solute rejection performance, the further heat treated fibers in an aqueous solution is found to be an effective way to fine tune membranes morphology and MWCO for kidney dialysis application. The solute rejection performance data of the hollow fiber membranes spun with 55 wt.% NMP in bore fluid after heat treated at 90 °C in water for 2 h were found to be very appropriate for the kidney dialysis application.  相似文献   

8.
In this work we performed nonequilibrium Brownian dynamics (NEBD) computer simulations of highly charged colloidal particles in diluted suspension under a parabolic flow in cylindrical pores. The influence of charged and neutral cylindrical pores on the structure and rheology of suspensions is analyzed. A shear-induced disorder-order-disorder-like transition was monitored for low shear rates and small pore diameters. We calculate the concentration profiles, axial distribution functions, and axial-angular pair correlation functions to determine the structural properties at steady state for a constant shear flow for different pore sizes and flow strengths. Similar behavior has been observed in a planar narrow channel in the case of charged interacting colloidal particles (M.A. Valdez, O. Manero, J. Colloid Interface Sci. 190 (1997) 81). The mobility of the particles in the radial direction decreases rapidly with the flow and becomes practically frozen. The flow exhibits non-Newtonian shear thinning behavior due to interparticle interactions and particle-wall interaction; the apparent viscosity is lower as the pore diameter decreases, giving rise to an apparent slip in the colloidal suspension. The calculated slip velocity was higher than that obtained in a rectangular slit under shear flow.  相似文献   

9.
Ordered silicas with large (9-15 nm), uniform, cagelike mesopores were synthesized under acidic aqueous conditions from tetraethyl orthosilicate in the presence of sodium chloride using poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer B50-6600 (EO39BO47EO39, Dow Chemicals) as a supramolecular template. Except for the use of NaCl in our case, the synthesis mixture composition was the same as that originally reported by Zhao et al. for the synthesis of FDU-1 silica, which was later shown to exhibit a cubic close-packed (Fm3m) structure with stacking faults related to the occurrence of hexagonal close-packed stacking sequences. The copolymer-templated silicas were formed at room temperature and in most cases were subjected to the hydrothermal treatment at 373 or 393 K. The calcined materials were characterized using small-angle X-ray scattering (SAXS) and nitrogen and argon adsorption at 77 K. SAXS patterns were generally similar to those reported for FDU-1 silica, indicating the cubic close-packed (Fm3m) structure, but the presence of stacking faults characteristic of a hexagonal close-packed structure cannot be precluded. The addition of the salt was found to significantly narrow the pore size distributions and to improve the uniformity of entrances to the cagelike mesopores, whereas the pore diameter, specific surface area, and pore volume were similar (in most cases slightly lower) to those for FDU-1 silicas obtained in the absence of NaCl. The materials synthesized in the presence of NaCl also appeared to have better resolved SAXS patterns. The feasibility of tailoring the pore cage diameter (from approximately 9.5 to 14.5 nm) and pore entrance diameter (from below 4 to approximately 8 nm) simply by adjusting the hydrothermal treatment temperature and time was demonstrated, indicating that these simple and convenient ways of structural design of cagelike mesopores are operative in the case of syntheses in the presence of inorganic salts.  相似文献   

10.
We report in this study the presence of Janus particles, which are candidates for use with electronic color papers. We used negatively charged polystyrene particles (370 nm) as the core particles, and gold was then sputtered onto their packed monolayer under several conditions. The sputtered particles were next redispersed into the aqueous medium by gentle sonication. Gold nanoparticles localized on one side of the cores could also serve as seeds for subsequent shell growth by electroless gold plating. Through these treatments, a series of well-dispersed Janus particles were obtained with gold nanostructures of different size and shape only on one side. Their dispersions showed different colors originating from the surface plasmon resonance absorption of gold nanoparticles localized on the hemisphere. The particles obtained by this approach have potential applications such as in sensors and electronic color paper.  相似文献   

11.
Monodisperse latex particles with surface amino groups were prepared by a two‐step emulsion polymerization. In the first step, the seeds were synthesized by batch emulsion polymerization of styrene; and in the second step, two different amino‐functionalized monomers [aminoethylmethacrylate hydrochloride (AEMH) and vinylbenzylamine hydrochloride (VBAH)], two different initiator systems (K2S2O8 and K2S2O8/Na2S2O5) and mixtures of emulsifiers sodium dodecylsulfate (SDS) and Tween 21 were used to synthesize the final latexes. To characterize the final latexes, conversions were obtained gravimetrically and particle size distributions and average particle diameters were determined by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The amount of amino groups was determined by the SPDP (N‐succinimidyl 3‐(2‐pyridyldithio)propionate) method. The influence of the different conditions used to synthesize the latexes on the colloidal stability of the particles was evaluated by measuring the diameters of the final latexes dispersed in solutions at different pHs and ionic strengths. The most stable latexes were obtained using the smallest seed, VBAH monomer, and the K2S2O8/Na2S2O5 initiator system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4230–4237, 2000  相似文献   

12.
The new macroscopic-scale SBA-15 spheres with diameter of 0.2-0.5 mm are prepared by a sol-gel method,in which the tetrabutylorthosilicate(TBOS) is used as silicon source and triblock copolymer(P123) and polyoxyethylene octylphenol ether(OP- 10) are used as templates.The resulting spherical samples are characterized by XRD,N_2 adsorption-desorption,TEM and SEM methods.The results show that the inner structure of SBA-15 macrospheres has macroporous channels(0.5μm) and mesoporous skeleton(4-5 nm).These SBA...  相似文献   

13.
A procedure was developed for preparing an aluminosilicate with a hierarchic pore structure and granules in the form of united polycrystalline concretions of MOR-type zeolite in the Na form. The procedure includes the step of mixing of MOR-type powdered zeolite with kaolin and white carbon black, granule forming, granule calcination, and crystallization in an autoclave in a sodium silicate solution.  相似文献   

14.
The pore connectivity, pore size distribution and pore spatial distribution of the porous structure of native and silanized silica particles were determined by matching the experimental nitrogen sorption data with the theoretical results obtained from pore network model simulations. The agreement between theory and experiment is found to be good. The results clearly indicate that the deposition of the silane layer to the pore surfaces of the native silica particles produces a silanized silica particle with a mean pore diameter and pore connectivity smaller than that of the native silica particle. Furthermore, the evaluation of the pore diffusivity of ribonuclease under unretained conditions shows that the lower values of the pore connectivity found in the samples of silanized silica particles, when compared with the values of the pore connectivity obtained for the native silica particles, increase the diffusional mass transfer resistance within the porous structure of the silanized silica particles.  相似文献   

15.
采用铝溶胶晶种引入、结合相分离的方法制备了具有三维贯通多级孔道结构的大孔氧化铝材料。采用扫描电镜(SEM)、X射线衍射(XRD)、N2吸附-脱附、压汞、核磁共振波谱(NMR)等测试方法对所得材料进行了表征。结果表明,该氧化铝材料具有200-600 nm的均匀分布且贯通的连续大孔孔道,经550℃焙烧即可得到结晶态γ-氧化铝。大孔氧化铝比表面积达到366 m2/g,具有以5 nm及400 nm为中心的较为集中的介孔-大孔多级孔道分布。焙烧后的样品中,铝具有四、六两种配位状态。制备过程中,聚环氧乙烷(PEO)作为诱导剂引发固-液两相分离,形成具有三维贯通多级孔道结构大孔氧化铝,而凝胶中引入铝溶胶时,AlOOH晶粒与铝交联水合物均相伴生,在凝胶过程诱导铝交联水合物转变为AlOOH,最终使大孔氧化铝在较低的焙烧温度即可转化为γ-氧化铝。  相似文献   

16.
A series of mesoporous carbons (MCs) have been obtained through organic–organic self-assembly method by using phloroglucinol–formaldehyde as carbon precursor and a reverse amphiphilic triblock copolymer as a template. Because of its acidity, the phloroglucinol was used as a catalyst itself. Results show that the pore size and structure of MCs were tailored by simply tuning the weight content of formaldehyde while keeping other reactants constant. A cylindrical mesostructure was obtained when the weight content was 1.0, 1.2 and 1.4. Further increasing the weight content to 1.6 or 2.0, a three-dimensional cage-like mesostructure was obtained. Specific surface area and pore volume up to 485 m2/g and 0.78 cm3/g can be reached, respectively. In addition, the pore size can be tuned in the range of 4.9–14.8 nm by changing the content of formaldehyde.  相似文献   

17.
We used electrophoresis for three purposes: (i) estimation of the mean pore size of polyacrylamide gels via measuring electrophoretic mobility of globular proteins of known sizes in combination with simple sieve (cylindrical and slit) models; (ii) determination of the average size of protein molecules (native or denatured) by the use of the same models; (iii) monitoring the changes in molecular dimensions of proteins in the course of their denaturation. Both models yield results that are in good agreement with those found via the more elaborate techniques (considering the principal differences involved). The approach provides a direct and convenient way of monitoring the variations in protein sizes during the course of their denaturation in gels having a gradient of denaturants, and possibly the number of conformational states involved in the process, a facet that is quite unique and useful. The simpler slit model seems to yield better results in the latter case and is moreover supported by the recently reported data on electrophoresis of DNA molecules through the 1 microm slits of a microbrush matrix made of micropillars arranged in a hexagonal lattice.  相似文献   

18.
Novel spherical mesoporous silica materials with uniform diameters and starburst mesopore structures were synthesized by a simple one-step procedure with ethanol as the co-solvent in dilute aqueous solution and their formation mechanism was proposed. The arrangement of the pore canal and the diameter of the sphere could be tailored by altering the concentration of ethanol.  相似文献   

19.
A pcu network can be ordered through trigonal bipyramidal nanocages as secondary building blocks, which have the striking feature of hydrophilic affinity to the polar molecules and π-π interactions for aromatic molecules.  相似文献   

20.
In this report, we present a simple wet chemical route to synthesize nano-sized silver particles, and their surface properties are discussed in detail. Silver nano particles of the size 40–80 nm are formed in the process of oxidation of glucose to gluconic acid by amine in the presence of silver nitrate, and the gluconic acid caps the nano silver particle. The presence of gluconic acid on the surface of nano silver particles was confirmed by XPS and FTIR studies. As the nano silver particle is encapsulated by gluconic acid, there was no surface oxidation, as confirmed by XPS studies. The nano silver particles have also been studied for their formation, structure, morphology and size using UV–Visible spectroscopy, XRD and SEM. Further, the antibacterial properties of these nano particles show promising results for E. Coli. The influence of the alkaline medium towards the particle size and yield was also studied by measuring the pH of the reaction for DEA, NaOH and Na2CO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号