首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that hydrophobic microfiltration membranes can be used for demulsification of oil-in-water (o/w) emulsion due to coalescence of oil droplets in membrane pores. This study demonstrates that a hydrophilic polymer membrane can be used for the demulsification of surfactant-stabilized water-in-oil (w/o) emulsions. The success of demulsification is dependent on the type of emulsions and membrane used. Membrane pore size and transmembrane pressure were found to affect demulsification efficiency (DM), while other factors, such as membrane thickness and initial water content have slight or almost no effect. A coalescence mechanism of the demulsification phenomenon is also discussed. The separation process is not based on sieving effects due to a difference in membrane pore size, but is determined by droplet interactions with membrane surface.  相似文献   

2.
Water‐in‐oil (w/o) emulsions were prepared with phosphatidylcholine‐depleted lecithin or polyglycerol polyricinoleate (PGPR) as emulsifying agents. The effect of different laboratory emulsification devices and the effect of sodium chloride on particle size distribution, coalescence stability, and water droplet sedimentation were investigated. The properties of lecithin‐stabilized w/o emulsions were found to depend more strongly on the emulsifying method than those prepared with PGPR. The rotor‐stator system was not suitable for preparing stable w/o emulsions with lecithin. Whereas the addition of salt was essential to achieve coalescence‐stable emulsions prepared with PGPR, the presence of NaCl favored the coalescence of water droplets and phase separation in emulsions containing lecithin.  相似文献   

3.
Double inversion of emulsions induced by salt concentration   总被引:1,自引:0,他引:1  
The effects of salt on emulsions containing sorbitan oleate (Span 80) and Laponite particles were investigated. Surprisingly, a novel double phase inversion was induced by simply changing the salt concentration. At fixed concentration of Laponite particles in the aqueous phase and surfactant in paraffin oil, emulsions are oil in water (o/w) when the concentration of NaCl is lower than 5 mM. Emulsions of water in oil (w/o) are obtained when the NaCl concentration is between 5 and 20 mM. Then the emulsions invert to o/w when the salt concentration is higher than 50 mM. In this process, different emulsifiers dominate the composition of the interfacial layer, and the emulsion type is correspondingly controlled. When the salt concentration is low in the aqueous dispersion of Laponite, the particles are discrete and can move to the interface freely. Therefore, the emulsions are stabilized by particles and surfactant, and the type is o/w as particles are in domination. At intermediate salt concentrations, the aqueous dispersions of Laponite are gel-like, the viscosity is high, and the transition of the particles from the aqueous phase to the interface is inhibited. The emulsions are stabilized mainly by lipophilic surfactant, and w/o emulsions are obtained. For high salt concentration, flocculation occurs and the viscosity of the dispersion is reduced; thus, the adsorption of particles is promoted and the type of emulsions inverts to o/w. Laser-induced fluorescent confocal micrographs and cryo transmission electron microscopy clearly confirm the adsorption of Laponite particles on the surface of o/w emulsion droplets, whereas the accumulation of particles at the w/o emulsion droplet surfaces was not observed. This mechanism is also supported by the results of rheology and interfacial tension measurements.  相似文献   

4.
The pace of development of edible Pickering emulsions has recently soared, as interest in their potential for texture modification, calorie reduction and bioactive compound encapsulation and delivery has risen. In the broadest sense, Pickering emulsions are defined as those stabilized by interfacially-adsorbed solid particles that retard and ideally prevent emulsion coalescence and phase separation. Numerous fat-based species have been explored for their propensity to stabilize edible emulsions, including triglyceride and surfactant-based crystals and solid lipid nanoparticles. This review explores three classes of fat-based Pickering stabilizers, and proposes a microstructure-based nomenclature to delineate them: Type I (surfactant-mediated interfacial crystallization), Type II (interfacially-adsorbed nano- or microparticles) and Type III (shear-crystallized droplet encapsulation matrices). Far from simply reporting the latest findings on these modes of stabilization, challenges associated with these are also highlighted. Finally, though emphasis is placed on food emulsions, the fundamental precepts herein described are equally applicable to non-food multicomponent emulsion systems.  相似文献   

5.
Degradation of kinetically-stable o/w emulsions   总被引:3,自引:0,他引:3  
This article summarizes the studies on the degradation of the thermodynamically unstable o/w (nano)emulsion--a dispersion of one liquid in another, where each liquid is immiscible, or poorly miscible in the other. Emulsions are unstable exhibiting flocculation, coalescence, creaming and degradation. The physical degradation of emulsions is due to the spontaneous trend toward a minimal interfacial area between the dispersed phase and the dispersion medium. Minimizing the interfacial area is mainly achieved by two mechanisms: first coagulation possibly followed by coalescence and second by Ostwald ripening. Coalescence is often considered as the most important destabilization mechanism leading to coursing of dispersions and can be prevented by a careful choice of stabilizers. The molecular diffusion of solubilizate (Ostwald ripening), however, will continuously occur as soon as curved interfaces are present. Mass transfers in emulsion may be driven not only by differences in droplet curvatures, but also by differences in their compositions. This is observed when two or more chemically different oils are emulsified separately and the resulting emulsions are mixed. Compositional ripening involves the exchange of oil molecules between emulsion droplets with different compositions. The stability of the electrostatically- and sterically-stabilized dispersions can be controlled by the charge of the electrical double layer and the thickness of the droplet surface layer formed by non-ionic emulsifier. In spite of the similarities between electrostatically- and sterically-stabilized emulsions, there are large differences in the partitioning of molecules of ionic and non-ionic emulsifiers between the oil and water phases and the thickness of the interfacial layers at the droplet surface. The thin interfacial layer (the electrical double layer) at the surface of electrostatically stabilized droplets does not create any steric barrier for mass transfer. This may not be true for the thick interfacial layer formed by non-ionic emulsifier. The interactive sterically-stabilized oil droplets, however, can favor the transfer of materials within the intermediate agglomerates. The stability of electrosterically-stabilized emulsion is controlled by the ratio of the thickness of the non-ionic emulsifier adsorption layer (delta) to the thickness of the electrical double layer (kappa(-1)) around the oil droplets (delta/(kappa(-1))) = (deltakappa). The monomer droplet degradation can be somewhat depressed by transformation of coarse emulsions to nano-emulsion (miniemulsion) by intensive homogenization and by the addition of a surface active agent (coemulsifier) or/and a water-insoluble compound (hydrophobe). The addition of hydrophobe (hexadecane) to the dispersed phase significantly retards the rate of ripening. A long chain alcohol (coemulsifier) resulted in a marked improvement in stability, as well, which was attributed to a specific interaction between alcohol and emulsifier and to the alcohols tendency to concentrate at the o/w interface to form stronger interfacial film. The rate of ripening, according to the Lifshitz-Slyozov-Wagner (LSW) model, is directly proportional to the solubility of the dispersed phase in the dispersion medium. The increased polarity of the dispersed phase (oil) decreases the stability of the emulsion. The molar volume of solubilizate is a further parameter, which influences the stability of emulsion or the transfer of materials through the aqueous phase. The interparticle interaction is expected to favor the transfer of solubilizate located at the interfacial layer. The kinetics of solubilization of non-polar oils by ionic micelles is strongly related to the aqueous solubility of the oil phase (the diffusion approach), whilst their solubilization into non-ionic micelles can be contributed by interparticle collisions.  相似文献   

6.
Oil-in-water (o/w) emulsions of styrene, as monomer oil in water, were achieved successfully via Pickering emulsification with laponite nanoparticles as the sole inorganic stabilizers. The formed emulsions showed excellent stability not only against droplets coalescence (before polymerization) but also against microparticles coagulation (after polymerization). Generally, the number of composite polystyrene microparticles (PS) increased and their sizes decreased with the content of solid nanoparticles used in stabilizing the precursor o/w emulsions. This is consistent with the formation of rigid layer(s) of the inorganic nanoparticles around the PS microparticles thus a better stability was achieved. The composite microparticles were characterized using various techniques such as surface charge, stability, transmission electron microscope (TEM), scanning electron microscope (SEM) and Fourier transform infra-red (FT-IR). Coating films of the prepared latexes were applied to flat glass surfaces and showed reasonable adhesion compared to PS latex particles prepared with conventional surfactants. The effect of employed conditions on the features of the resulting emulsions in terms of stability and particle size has been discussed.  相似文献   

7.
We describe how a versatile amphiphilic diblock copolymer can form oil-in-water (o/w) or water-in-oil (w/o) emulsions depending on pH and temperature. At high pH and temperature, this copolymer is mostly hydrophobic and forms w/o emulsions. Its spontaneous curvature is greatly increased upon pH and/or temperature lowering (due to protonation and/or hydration, respectively), which allows the formation of o/w emulsions. Conductivity measurements and confocal fluorescence micrographs evidence the two kinds of structures obtained over a wide range of pH and temperature. We also show how the emulsion type can be reversibly switched along a temperature scan under stirring. The lower stability of the w/o emulsions as compared to the o/w ones is attributed to a lack of electrostatic repulsion. The importance of the copolymer architecture and conformation with regards to droplet stability is discussed.  相似文献   

8.
Polymeric surfactants obtained by hydrophobic modification of dextran are used as stabilizers for oil-in-water emulsions. The kinetics of interfacial tension decrease is studied as a function of polymer structural characteristics (degree of hydrophobic substitution) and at various polymer concentrations. Several hydrocarbon oils, either aliphatic (octane, decane, dodecane, and hexadecane) or aromatic (styrene), are tested. Kinetics exhibits the same general trends no matter which oil or polymer is considered. The emulsifying properties of the polymeric surfactants are illustrated by the preparation of oil-in-water emulsions. The droplet size at the preparation is correlated to the amount of oil and to the polymer concentration in the aqueous phase. For low polymer/oil ratios, it is shown that the droplet size is limited by the initial amount of polymer. On the contrary, for high polymer/oil ratios, the droplet size seems to level down, indicating that other parameters become predominant. Emulsion aging occurs by Ostwald ripening, and it is demonstrated that the theoretical equation of Lifshitz, Slyozov, and Wagner (LSW) correctly describes the experimental results. The nature of the oil has important effects on emulsion aging, as described by the LSW equation. The aging of emulsions containing oil mixtures is quantitatively described on the basis of the results with pure oils. The influence of polymer chemical structure can be conveniently correlated to interfacial tension results through the LSW equation. On the contrary, the influence of oil volume fraction seems to be overestimated by the usual correction factor, k(phi). The effect of temperature on emulsion aging is finally examined. Miniemulsions stabilized with dextran derivatives are used for the radical polymerization of styrene. Following this procedure, polysaccharide-covered polystyrene nanoparticles are prepared and characterized (size and surface coverage). The size of the particles is directly correlated to that of the initial droplets for styrene volume fractions around 10%. On the contrary, for initial styrene volume fractions around 20%, particles exhibit a larger size than the initial droplets, indicating that coalescence processes take place during polymerization. The amount of dextran at the surface of the particles is determined and compared to the adsorbed amounts resulting from emulsion preparation.  相似文献   

9.
The present study reports on the influence of partially hydrolyzed polyacrylamide (HPAM) on essential w/o emulsion properties. The characterization has been undertaken with low field NMR to follow droplet sizes and distributions, sedimentation and coalescence kinetic, bench-scale electrocoalescence (Ecrit) experiments to follow emulsion stability changes, and electrorheology to detect changes in the viscosity upon applying an external electric field. The result is that HPAM does not basically influence the droplet size distribution (DSD) and the stability level of the emulsions as can be expected of bulk polymers. However, there seems to be an interaction between added demulsifiers either through direct molecular interaction or via an interfacial complexation.  相似文献   

10.
Aqueous dispersions of lightly cross-linked poly(4-vinylpyridine)/silica nanocomposite microgel particles are used as a sole emulsifier of methyl myristate and water (1:1 by volume) at various pH values and salt concentrations at 20 degrees C. These particles become swollen at low pH with the hydrodynamic diameter increasing from 250 nm at pH 8.8 to 630 nm at pH 2.7. For batch emulsions prepared at pH 3.4, oil-in-water (o/w) emulsions are formed that are stable to coalescence but exhibit creaming. Below pH 3.3, however, these emulsions are very unstable to coalescence and rapid phase separation occurs just after homogenization (pH-dependent). The pH for 50% ionization of the pyridine groups in the particles in the bulk (pK(a)) was determined to be 3.4 by acid titration measurements of the aqueous dispersion. Thus, the charged swollen particles no longer adsorb at the oil-water interface. For continuous emulsions (prepared at high pH with the pH then decreased abruptly or progressively), demulsification takes place rapidly below pH 3.3, implying that particles adsorbed at the oil-water interface can become charged (protonated) and detached from the interface in situ (pH-responsive). Furthermore, at a fixed pH of 4.0, addition of sodium chloride to the aqueous dispersion increases the degree of ionization of the particles and batch emulsions are significantly unstable to coalescence at a salt concentration of 0.24 mol kg(-1). The degree of ionization of such microgel particles is a critical factor in controlling the coalescence stability of o/w emulsions stabilized by them.  相似文献   

11.
The influence of oil type (n-hexadecane, 1-decanol, n-decane), droplet composition (hexadecane:decanol), and emulsifier type (Tween 20, gum arabic) on droplet growth in oil-in-water emulsions was studied. Droplet size distributions of emulsions were measured over time (0-120 h) by laser diffraction and ultrasonic spectroscopy. Emulsions containing oil molecules of low polarity and low water solubility (hexadecane) were stable to droplet growth, irrespective of the emulsifier used to stabilize the droplets. Emulsions containing oil molecules of low polarity and relatively high water solubility (decane) were stable to coalescence, but unstable to Ostwald ripening, irrespective of emulsifier. Droplet growth in emulsions containing oil molecules of relatively high polarity and high water solubility (decanol) depended on emulsifier type. Decanol droplets stabilized by Tween 20 were stable to droplet growth in concentrated emulsions but unstable when the emulsions were diluted. Decanol droplets stabilized by gum arabic exhibited rapid and extensive droplet growth, probably due to a combination of Ostwald ripening and coalescence. We proposed that coalescence was caused by the relatively low interfacial tension at the decanol-water boundary, which meant that the gum arabic did not absorb strongly to the droplet surfaces and therefore did not prevent the droplets from coming into close proximity.  相似文献   

12.
W/C emulsions were stabilized using hydrophobic silica particles adsorbed at the interface, resulting in average droplet diameters as low as 7.5 microm. A porous cross-linked shell was formed about a hydrophilic (colloidal and fumed) silica core with a trifunctional silylating agent, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethyoxysilane, to render the particles CO(2)-philic. The stability of emulsions comprising equal weights of CO(2) and water was assessed with visual observations of settling fronts and the degree of emulsion coalescence, and the average drop size was measured by optical microscopy. The effect of CO(2) density on both emulsion stability and droplet size was determined quantitatively. The major destabilizing mechanism of the emulsions was settling, whereas Ostwald ripening and coalescence were not visible at any density, even over 7 days. Flocculation of the settling droplets did not occur, although gelation of the emulsions through particle interactions resulted after longer periods of time. CO(2)-philic particles offer a new route to highly stable W/C emulsions, with particle energies of attachment on the order of 10(6)kT, even at CO(2) densities as low as 0.78 g ml(-1). At these low densities, surfactants rarely stabilize emulsions as the result of poor surfactant tail solvation.  相似文献   

13.
A characterization of 30 crude oils has been performed to determine the relative level of influence that individual parameters have over the overall stability of w/o emulsions. The crude oils have been analyzed with respect to bulk and interfacial properties and the characteristics of their w/o emulsions. The parameters include compositional properties, acidity, spectroscopic signatures in the infrared and near‐infrared region, density, viscosity, molecular weight, interfacial tension, dilational relaxation, droplet size distribution, and stability to gravitationally and electrically induced separation. As expected, a strong covariance between several physicochemical properties was found. Near‐infrared spectroscopy proved to be an effective tool for crude oil analysis. In particular, we have showed the importance of the hydrodynamic resistance to electrically‐induced separation (static) in heavy crude oil‐water emulsions. A rough estimate of the drag forces and dielectrophoretic forces seemed to capture the difference between the 30 crude oils. Given enough time, water‐in‐heavy oil emulsions could be destabilized even at very low electric field magnitude (d.c.). When droplets approach each other in an inhomogeneous electric field, strong dielectrophoretic forces disintegrate the films and result in coalescence. The relative contribution from film stability to the overall emulsion stability may therefore be very different in a gravitational field compared to that in an electrical field.  相似文献   

14.
In this study the potential ability of food-grade particles (at the droplet interface) to enhance the oxidative stability was investigated. Sunflower oil-in-water emulsions (20%), stabilised solely by food-grade particles (Microcrystalline cellulose (MCC) and modified starch (MS)), were produced under different processing conditions and their physicochemical properties were studied over time. Data on droplet size, surface charge, creaming index and oxidative stability were obtained. Increasing the food-grade particle concentration from 0.1% to 2.5% was found to decrease droplet size, enhance the physical stability of emulsions and reduce the lipid oxidation rate due to the formation of a thicker interfacial layer around the oil droplets. It was further shown that, MCC particles were able to reduce the lipid oxidation rate more effectively than MS particles. This was attributed to their ability to scavenge free radicals, through their negative charge, and form thicker interfacial layers around oil droplets due to the particles size differences. The present study demonstrates that the manipulation of emulsions' interfacial microstructure, based on the formation of a thick interface around the oil droplets by food-grade particles (Pickering emulsions), is an effective approach to slow down lipid oxidation.  相似文献   

15.
Stable carbon dioxide-in-water emulsions were formed with silica nanoparticles adsorbed at the interface. The emulsion stability and droplet size were characterized with optical microscopy, turbidimetry, and measurements of creaming rates. The increase in the emulsion stability as the silica particle hydrophilicity was decreased from 100% SiOH to 76% SiOH is described in terms of the contact angles and the resulting energies of attachment for the silica particles at the water-CO(2) interface. The emulsion stability also increased with an increase in the particle concentration, CO(2) density, and shear rate. The dominant destabilization mechanism was creaming, whereas flocculation, coalescence, and Ostwald ripening played only a minor role over the CO(2) densities investigated. The ability to stabilize these emulsions with solid particles at CO(2) densities as low as 0.739 g/mL is particularly relevant in practical applications, given the difficulty in stabilizing these emulsions with surfactants, because of the unusually weak solvation of the surfactant tails by CO(2).  相似文献   

16.
Temperature- and pH-sensitive microgels from cross-linked poly(N-isopropylacrylamide)-co-methacrylic acid are utilized for emulsion stabilization. The pH- and temperature-dependent stability of the prepared emulsion was characterized. Stable emulsions are obtained at high pH and room temperature. Emulsions with polar oils, like 1-octanol, can be broken by either addition of acid or an increase of temperature, whereas emulsions with unpolar oils do not break upon these stimuli. However, complete phase separation, independent of oil polarity, can be achieved by successive acid addition and heating. This procedure also offers a way to recover and recycle the microgel from the sample. Interfacial dilatational rheology data correlate with the stimuli sensitivity of the emulsion, and a strong dependence of the interfacial elastic and loss moduli on pH and temperature was found. The influence of the preparation method on the type of emulsion is demonstrated. The mean droplet size of the emulsions is characterized by means of flow particle image analysis. The type of emulsion [water in oil (w/o) or oil in water (o/w)] depends on the preparation technique as well as on the microgel content. Emulsification with high shear rates allows preparation of both w/o and o/w emulsions, whereas with low shear rates o/w emulsions are the preferred type. The emulsions are stable at high pH and low temperature, but instable at low pH and high temperature. Therefore, we conclude that poly(N-isopropylacrylamide)-co-methacrylic acid microgels can be used as stimuli-sensitive stabilizers for emulsions. This offers a new and unique way to control emulsion stability.  相似文献   

17.
Formula emulsion systems are used as enteral, sports and health products. In some formulas addition of hydrolysed protein is necessary to guarantee ease of digestion and hypoallergenicity. In the low fat emulsion model an increase in the content of lecithin (phospholipid mixture) was required, in consideration of the advice of the Food and Nutrition Board (USA) for choline supplementation. The individual and interactive effects of whey protein isolate (WPI) or hydrolysate (WPH) (3.7 and 4.9% w/w), unmodified deoiled or hydrolysed lecithin (0.48 or 0.7% w/w) and carbohydrate in the form of maltodextrin with dextrose equivalent (DE) 18.5 or glucose syrup with DE 34 (11% w/w) on the properties of formula emulsions with 4% v/w sunflower oil, were investigated using a full factorial design. The emulsions were characterised by particle size distribution, coalescence stability, creaming rate, and also surface protein and lecithin concentration. WPI-containing emulsions proved to be stable against coalescence and showed only little creaming after 1 and 7 days standing. There was a significant increase in the mean droplet size and a significant deterioration of coalescence and creaming stability when WPH instead of WPI was used as the protein source, due to the lower number of large peptides and lower surface activity of the WPH. Increasing the WPH concentration led to an increase in oil droplet size and further deterioration of the stability of the emulsions. The starch hydrolysate and lecithin also significantly influenced the emulsion properties. Their influence was less strong when the emulsion contained WPI. Under the conditions used WPH-based emulsions were more stable, in terms of creaming and coalescence, when a low level of protein was used in conjunction with hydrolysed lecithin and glucose syrup. Oil droplets in emulsions containing unmodified lecithin in either the continuous or disperse phase and WPH in the continuous phase were very sensitive to coalescence. The addition of starch hydrolysates (DE 18.5) induced intensive flocculation and phase separation in these emulsions.  相似文献   

18.
Particle-stabilized emulsions comprised of solid droplets   总被引:2,自引:0,他引:2  
We kinetically stabilize oil-in-water emulsions comprising paraffin crystals by adsorbing solid particles (silica) of colloidal size at the oil/water interface. We obtain a set of emulsions that are quiescently stable for a long period of time (months), while the same emulsions are destabilized after only a few hours in the presence of surfactant molecules alone. The emulsions are submitted to a shear stress in order to probe their stability under flow conditions. Partial coalescence and gelation occur when the shear is applied for a sufficiently long period of time. The experiments reveal the existence of a critical droplet mass fraction, phi*, that defines a sharp transition between slow and fast gelation. The process of gelation is rather slow for phi < phi*, occurring at the scale of hours, and becomes almost instantaneous above phi*.  相似文献   

19.
The affinity of weak polyelectrolyte coated oxide particles to the oil-water interface can be controlled by the degree of dissociation and the thickness of the weak polyelectrolyte layer. Thereby the oil in water (o/w) emulsification ability of the particles can be enabled. We selected the weak polyacid poly(methacrylic acid sodium salt) and the weak polybase poly(allylamine hydrochloride) for the surface modification of oppositely charged alumina and silica colloids, respectively. The isoelectric point and the pH range of colloidal stability of both particle-polyelectrolyte composites depend on the thickness of the weak polyelectrolyte layer. The pH-dependent wettability of a weak polyelectrolyte-coated oxide surface is characterized by contact angle measurements. The o/w emulsification properties of both particles for the nonpolar oil dodecane and the more polar oil diethylphthalate are investigated by measurements of the droplet size distributions. Highly stable emulsions can be obtained when the degree of dissociation of the weak polyelectrolyte is below 80%. Here the average droplet size depends on the degree of dissociation, and a minimum can be found when 15 to 45% of the monomer units are dissociated. The thickness of the adsorbed polyelectrolyte layer strongly influences the droplet size of dodecane/water emulsion droplets but has a less pronounced impact on the diethylphthalate/water droplets. We explain the dependency of the droplet size on the emulsion pH value and the polyelectrolyte coating thickness with arguments based on the particle-wetting properties, the particle aggregation state, and the oil phase polarity. Cryo-SEM visualization shows that the regularity of the densely packed particles on the oil-water interface correlates with the degree of dissociation of the corresponding polyelectrolyte.  相似文献   

20.
A laboratory study was conducted to evaluate the effect of pH on the stability of oil-in-water emulsions stabilized by a commercial splittable surfactant Triton SP-190 by comparison with the results obtained by a common surfactant Triton X-100. The emulsion stability was explored by measuring the volume of oil phase separated and the size of the dispersed droplets. It was found that the addition of inorganic acids did not significantly affect the stability of emulsions stabilized by Triton X-100, but had a profound influence on the stability of emulsions stabilized by Triton SP-190. Moreover, the droplet size of a Triton X-100-stabilized emulsion and its dynamic interfacial activity were insensitive to acids. However, at lower pH the droplet size of the emulsions stabilized by Triton SP-190 was considerably increased. From the dynamic interfacial tension measurements the dynamic interfacial activity of Triton SP-190 at the oil/water interface was found to be strongly inhibited by the addition of acids, resulting in a slower decreasing rate of dynamic interfacial tension. The results demonstrate that the dramatic destabilization of Triton SP-190-stabilized emulsions could be realized by the use of acids, which evidently changed the interfacial properties of the surfactant and resulted in a higher coalescence rate of oil droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号