首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Euler's equations for quantum rheology and the confinement of electrons in a system of active centers of nanometric scale of a condensed state are obtained using the formalism of kinematic electron-density waves. The conditions for the stability of the electron quantum walls of confinement in the form of the balance between the forces of electric and quantum nature are analyzed.E. A. Buketov Karagandinsk State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 60–67, August, 1994.  相似文献   

2.
3.
We present a novel mechanism of nanostructure growth based on quantum confinement of surface-state electrons. Ab initio calculations and the kinetic Monte Carlo simulations reveal the phenomenon of confinement-induced adatom self-organization in quantum corrals. Our studies indicate that new atomic-scale nanostructures can be engineered exploiting the quantum confinement of surface electrons.  相似文献   

4.
Electrons on the surface of liquid helium form a two-dimensional system that is of great interest for its own unique properties as well as being a probe of the helium surface. The spectroscopic evidence for the hydrogenic nature of the surface state is compared with predictions. Measurements of the electron mobility parallel to the surface in low and high electric fields are compared with theory. The lifetime in the surface state is discussed as well as the effect of the electron on the liquid surface. The possibility that the electrons crystallize to form a two-dimensional lattice and the properties of this lattice are also analyzed.  相似文献   

5.
We studied the quantum interference of electrons in the Bi (p(x), p(y)) orbital-derived j = 1/2 spin-split surface states at Bi/Ag(111)√3 × √3 surfaces of 10 monolayer thick Ag(111) films on Si(111) substrates. Surface electron standing waves were observed clearly at the energy (E) below the intersection of the two spin-split downward dispersing parabola bands (E(x)). The E dependence of the standing wave pattern reveals the dispersion as the average of the two spin-split surface bands due to the interference between |(k + Δ), ↑> and |-(k - Δ), ↑> [or (|(k - Δ), ↓>) and |-(k + Δ), ↓>] states. In contrast, it was impossible to deduce the dispersion from the standing wave pattern at E ≥ E(x) because the surface electron cannot find its backscattered state with the same spin polarization.  相似文献   

6.
7.
The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm3, which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen.  相似文献   

8.
9.
The aggregate state of tin nanoparticles produced by laser ablation of a solid target in liquid was studied. The study was performed using optical spectroscopy, electron and atomic-force microscopy, and photon correlation spectroscopy. Based on the experimental data obtained, it was shown that tin nanoparticles smaller than 50 nm are liquid under normal conditions. It is in agreement with presented theoretical estimates.  相似文献   

10.
The scattering of surface state electrons at Lander-type molecules on Cu(111) is investigated by means of scanning tunneling microscope (STM) experiments at low temperature and model calculations. Specific information concerning the electronic interaction of the different internal groups of the molecule with the surface is obtained. Remarkably, the central molecular wire of the molecule, although decoupled from the surface by spacer groups and therefore not visible in STM images, is the main one responsible for scattering of surface state electrons.  相似文献   

11.
12.
We propose a novel deterministic protocol, based on continuous light flows, that enables us to control the concentration of light in generic plasmonic nanostructures. Based on an exact inversion of the response tensor of the nanosystem, the so-called deterministic optical inversion protocol provides a physical solution for the incident field leading to a desired near-field pattern, expressed in the form of a coherent superposition of high-order beams. We demonstrate the high degree of control achieved on complex plasmonic architectures and quantify its efficiency and accuracy.  相似文献   

13.
Measurements of the thermal properties of nanoscale electron systems have ignored the effect of electrical noise radiated between the electron gas and the environment, through the electrical leads. Here we calculate the effect of this photon-mediated process, and show that the low-temperature thermal conductance is equal to the quantum of thermal conductance, GQ = pi2kB2T/3h, times a coupling coefficient. We find that, at very low temperatures, the photon conductance is the dominant route for thermal equilibration, while at moderate temperatures this relaxation mode adds one quantum of thermal conductance to that due to phonon transport.  相似文献   

14.
Sputtering of a cluster of 75 copper atoms from a copper-substrate surface by 200-eV argon ions is simulated using a molecular-dynamics method for target equilibrium temperatures of 0, 300, and 500 K. The sputtering coefficients of the substrate and the cluster and the angular and energy distributions of the sputtered atoms are studied. The mechanisms behind the influence of the thermal atomic vibrations on the sputtering yield of surface metallic clusters are discussed.  相似文献   

15.
10 new cw far infrared laser lines have been observed by optically pumping the CD3 deformation vibration band of CD3OH with 9 μm CO2-laser lines  相似文献   

16.
17.
18.
Local densities of electron states at and near the surface of a semi-infinite solid are discussed and compared with the corresponding ones in the infinite solid. The reflectivity coefficients for electrons, incident from both sides on the surface, are shown to be closely related to these densities. Illustrating results are given for the one-dimensional model crystal. The surface Green function (SGF) method is used.  相似文献   

19.
Oxygen deficient zinc oxide (ZnO) thin films were deposited electrochemically on glass substrates which are pre-sputtered with pure zinc (Zn) metal. Well-arranged flower-like nanostructures are observed from the SEM micrographs. The purity and crystallinity of the deposited films were confirmed from X-ray diffraction studies supported by Raman studies. The broad and intense defect induced green emission confirms the high oxygen deficiency in the nanostructures. The flower-like structures as well as the oxygen defects present in the system are indeed very suitable for gas and chemical sensing applications. These films were used for room temperature sensing of three different chemicals viz. acetone, ethanol and ammonia. The sensor was found to be insensitive to the change in different concentrations of acetone while it was found to be sensitive to different concentrations of ethanol and ammonia. The sensor is most suitable for sensing ammonia at room temperature.  相似文献   

20.
Chang CK  Lin DZ  Yeh CS  Lee CK  Chang YC  Lin MW  Yeh JT  Liu JM 《Optics letters》2006,31(15):2341-2343
Two types of double-sided nanostructure, one possessing a slit aperture with parallel grooves and the other possessing a circular aperture with concentric grooves, were fabricated to examine the similarities and differences of their diffraction behavior in one-dimensional (1-D) and two-dimensional (2-D) nanostructures. Based on the projection-slice theory, we conjecture that the surface plasmons in these two different nano-scale grooves possess similar modes. A localized surface plasmon (LSP) was used to examine the transmission characteristics induced by the apertures. The transmission characteristics of the slitted nanostructure and the circular nanostructure aperture were then measured. We coupled the transmission spectra measured from these two apertures with a 1-D parallel groove transmission curve simulated by a 1-D rigorous coupled wave analysis. Measured spectra results show reasonable agreement with the simulated data. We propose that the apparent blueshift observed in the peak frequency of a 2-D nanostructure is due to the difference in the shape of the aperture and the spot transmission characteristics of 1-D and 2-D systems as induced by a LSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号