首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Elemental analysis of ancient ceramics is primarily used in provenance research, where defined compositional groups are attributed to particular raw materials sources or production locations. Requirements in data quality and analytical performance are high, as is the need for clear and reproducible methodologies and the availability of information on the above to ensure interlaboratory comparability and long‐term data validity. This paper outlines the measurement parameters of a dedicated calibration set‐up for the analysis of ancient ceramics using wavelength‐dispersive X‐ray fluorescence spectrometry. The specimens are prepared as concentrated glass beads, allowing the measurement of 26 elements from a single sample, thus minimising sample size requirements. Certified and non‐commercial standards are used to evaluate the performance of the method in terms of detection limits, precision, repeatability and accuracy. The materials used cover a range of compositions in line with the matrix variability encountered in archaeological ceramics. The data confirm the high standard of the method and highlight specific limitations. An initial assessment of comparability with other set‐ups used in ceramic analyses, primarily neutron activation analysis, is given through a discussion of performance on commonly analysed materials. The advantages of the proposed method include excellent analytical performance, analysis of a large suite of elements including all major, minor and a good range of traces, relatively small sample sizes and preparation of samples that can be stored and reanalysed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The widespread use and acceptance of fluorescence techniques especially in regulated areas like medical diagnostics is closely linked to standardization concepts that guarantee and improve the comparability and reliability of fluorescence measurements. At the core of such concepts are dependable fluorescence standards that are preferably certified. The ever rising interest in fluorescence measurements in the near-infrared (NIR) spectral region renders the availability of spectral and intensity standards for this wavelength region increasingly important. This encouraged us to develop approaches to solid NIR standards based upon dye-doped polymers and assess their application-relevant properties in comparison to metal ion-doped glasses. The overall goal is here to provide inexpensive, easily fabricated, and robust internal and external calibration tools for a broad variety of fluorescence instruments ranging e.g. from spectrofluorometers over fluorescence microscopes to miniaturized fluorescence sensors.  相似文献   

3.
The inter-instrument, inter-laboratory, and long-term comparability of fluorescence data requires the correction of the measured emission and excitation spectra for the wavelength- and polarization-dependent spectral irradiance of the excitation channel at the sample position and the spectral responsivity of the emission channel employing procedures that guarantee traceability to the respective primary standards. In this respect the traceability chain of fluorometry is discussed from a radiometrist’s point of view. This involves, in a first step, the realization of the spectral radiance scale, based on the blackbody radiator and electron storage ring, and the spectral responsivity scale, based on the cryogenic radiometer and their control via key comparisons of the national metrology institutes. In a second step, the characterization including state-of-the art uncertainties of the respective source and detector transfer standards such as tungsten strip lamps, integrating sphere radiators, and trap detectors used to disseminate these radiometric quantities to users of spectroscopic techniques is presented.  相似文献   

4.
The need for the traceable characterization of fluorescence instruments is emphasized from a chemist’s point of view, focusing on spectral fluorescence standards for the determination of the wavelength- and polarization-dependent relative spectral responsivity and relative spectral irradiance of fluorescence measuring systems, respectively. In a first step, major sources of error of fluorescence measurements and instrument calibration are revealed to underline the importance of this issue and to illustrate advantages and disadvantages of physical and chemical transfer standards for generation of spectral correction curves. Secondly, examples for sets of traceable chemical emission and excitation standards are shown that cover a broad spectral region and simple procedures for the determination of corrected emission spectra with acceptable uncertainties are presented. With proper consideration of the respective measurement principle and geometry, these dye-based characterization procedures can be not only applied to spectrofluorometers but also to other types of fluorescence measuring systems and even to Raman spectrometers.  相似文献   

5.
Spectroscopic and photophysical properties of two fluorescent probes for monosaccharides are presented. Probes are based on the N-phenyl-1,8-naphthalimide structure having the boronic acid group [R-B(OH)2] in ortho in one case, and meta in the other case, positions of the N-phenyl group. Formation of the anionic form of the boronic acid group [R-B(OH) 3] induced a substantial decrease of the steady-state fluorescence of both compounds. Because no change in the fluorescence lifetime from the neutral to the anionic forms is observed, static quenching resulting from photoinduced electron transfer from the anionic form of the boronic acid is used to explain the decrease of the emission intensity. Both compounds show substantial decreases of their fluorescence intensity in the presence of sugars. In addition, this decrease of the fluorescence intensity is associated with an increase of the fluorescence lifetime for the ortho derivative while no effect on the lifetime is observed for the meta derivative. Both photoinduced electron transfer and steric hindrance are discussed to correlate the observed results.  相似文献   

6.
With the Calibration Kit Spectral Fluorescence Standards BAM-F001-BAM-F005, we developed a simple tool for the characterization of the relative spectral responsivity and the long-term stability of the emission channel of fluorescence instruments under routine measurement conditions thereby providing the basis for an improved comparability of fluorescence measurements and eventually standardization. This first set of traceable fluorescence standards, which links fluorescence measurements to the spectral radiance scale in the spectral range of 300-770 nm and has been optimized for spectrofluorometers, can be employed for different measurement geometries and can be adapted to different fluorescence techniques with proper consideration of the underlying measurement principles.  相似文献   

7.
ASCUT-1 is a protein found in cuticlin, the insoluble residue of the cuticles of the nematode Ascaris lumbricoides. It contains the CUT-1-like domain which is shared by members of a novel family of components of extracellular matrices. The monomeric form of ASCUT-1 contains a single tryptophan residue. An understanding of the structure-function relationship of the protein under different chemical-physical conditions is of fundamental importance for an understanding of its structure and function in cuticles. In this paper we report the effect of the temperature and sodium dodecyl sulfate on the structural stability of this protein. The structure of the protein was studied in the temperature range 25–85°C in the absence and in the presence of sodium dodecyl sulfate by frequency-domain measurements of the intrinsic fluorescence intensity and anisotropy decays. The time-resolved fluorescence data in the absence of SDS indicated that the tryptophanyl emission decays were well described by a bimodal lifetime distribution, and that the temperature increases resulted in the sharpening and in the shortening of the tryptophanyl lifetime distribution. In the presence of SDS an unimodal fluorescence lifetime distribution as well as a marked decrease in the anisotropy decay values were observed.  相似文献   

8.
A model is suggested to calculate the degree of polarization of the fluorescence of jet-cooled polyatomic molecules excited within the P- and R branches of the rotational contour of the vibronic line by light not providing resolution of the rotational structure. These dependences are calculated and compared with experimental data for molecules belonging to different types of asymmetric tops with different intramolecular orientation of the fluorescence transition dipole moment: anthracene; anthracene + Ar; 1,4-diaminoanthraquinone; indole; tetracene, and triphendioxazine.  相似文献   

9.
We measure the fluorescence quantum yields (q fl) of complexes of Al, Sc, Y, In, Lu, and Gd with dibenzoylmethane in aqueous and isopropanol solutions at different concentration ratios of ions and dike-tone. We reveal that, for the examined solutions, qfl of complexes varies more than by two orders of magnitude under the influence of the heavy atom. It is found that a considerable decrease in q fl and τfl of ligands of complexes of listed ions caused by the influence of heavy atoms weakly affects the intensity of sensitized fluorescence of Nile red and rhodamine 6G molecules introduced into nanoparticles from these complexes in aqueous solutions. The revealed result is explained by the comparability of the singlet exciton free path length and the dimension of nanoparticles under study. We show that a lower fluorescence intensity of heavy metal complexes makes it possible to decrease its contribution in the range of the cofluorescence maximum of rhodamine 6G and to monitor the occurrence of the dye in the aqueous solution down to the concentration of 0.05 nM. We show that, in nanoparticles from Eu complexes, further fluorescence quenching of dibenzoylmethane is observed, as well as the appearance of cofluorescence of rhodamine 6G, the intensity of which is comparable with its intensity in nanoparticles of other complexes. The appearance of this cofluorescence cannot be explained by the existence of S-S energy migration.  相似文献   

10.
Kujawska T  Nowicki A  Lewin PA 《Ultrasonics》2011,51(8):997-1005
This work addresses the difficulties in the measurements of the nonlinear medium parameter B/A and presents a modification of the finite amplitude method (FAM), one of the accepted procedures to determine this parameter. The modification is based on iterative, hybrid approach and entails the use of the versatile and comprehensive model to predict distortion of the pressure–time waveform and its subsequent comparison with the one experimentally determined. The measured pt waveform contained at least 18 harmonics generated by 2.25 MHz, 29 mm effective diameter, single element, focused PZT source (f-number 3.5) and was recorded by Sonora membrane hydrophone calibrated in the frequency range 1–40 MHz. The hydrophone was positioned coaxially at the distal end of the specially designed, two-section assembly comprising of one, fixed length (60 mm), water-filled cylindrical container and the second, variable length (60–120 mm) container that was filled with unknown medium. The details of the measurement chamber are described and the reasons for this specific design are analyzed. The data were collected with the variable length chamber filled with 1.3-butanediol, which was used as a close approximation of tissue mimicking phantom. The results obtained provide evidence that a novel combination of the FAM with the semi-empirical nonlinear propagation model based on the hyperbolic operator is capable of reducing the overall uncertainty of the B/A measurements as compared to those reported in the literature. The overall uncertainty of the method reported here was determined to be ±2%, which enhances the confidence in the numerical values of B/A measured for different, clinically relevant media. Optimization of the approach is also discussed and it is shown that it involves an iterative procedure that entails a careful selection of the acoustic source and its geometry and the axial distance over which the measurements need to be performed. The optimization also depends critically on the experimental determination of the source surface pressure amplitude.  相似文献   

11.
With the increased development and use of fluorescence lifetime-based sensors, fiber optic sensors, fluorescence lifetime imaging microscopy (FLIM), and plate and array readers, , calibration standards are essential to ensure the proper function of these devices and accurate results. For many devices that utilize a “front face excitation” geometry where the excitation is nearly coaxial with the direction of emission, scattering-based lifetime standards are problematic and fluorescent lifetime standards are necessary. As more long wavelength (red and near-infrared) fluorophores are used to avoid background autofluorescence, the lack of lifetime standards in this wavelength range has only become more apparent . We describe an approach to developing lifetime standards in any wavelength range, based on Förster resonance energy transfer (FRET). These standards are bright, highly reproducible, have a broad decrease in observed lifetime, and an emission wavelength in the red to near infrared making them well suited for the laboratory and field applications as well. This basic approach can be extended to produce lifetime standards for other wavelength regimes.  相似文献   

12.
Based on a solution of the polymer excluded volume problem, a technique is proposed to estimate some parameters at the isotropic-nematic liquid crystal phase transition (the product of the volume fraction of hard sticks and the ratio of the stick length, L, to its diameter, D; the maximum value of this ratio at which one cannot regard the stick as hard). The critical exponents are estimated. The transition of a swelling polymer coil to ideal is revealed as the polymerization degree of a macromolecule increases. The entanglement concentration obtained agrees with experimental data for polymers with flexible chains. The number of monomers between neighbor entanglements is assumed to be the ratio L/D. A comparison of the theory with other ones and recent experimental data is made.  相似文献   

13.
This article describes an objective methodology for measuring the noise attenuation of earmuff hearing protectors using as a reference the method known as microphone-in-real-ear (MIRE). The methodology implements the insertion loss (IL) paradigm, in which IL is measured using miniature microphones, specially designed to comply with ANSI and ISO standards for the MIRE technique. The results for four different hearing protectors are compared with the subjective method known as real-ear-attenuation-at-threshold (REAT). Correction factors are included in the methodology to account for external effects such as physiological noise and bone conduction. The objective method predicted well the real protection of the earmuffs and the proposed methodology showed lower standard deviation values than the REAT method.  相似文献   

14.
15.
Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA–Cr(III)) has been used as a new metal-chelating monomer via metal coordination–chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern–Volmer equation.  相似文献   

16.
lin-Benzo-adenine nucleotides can act not only as probes for fluorescence studies but also as structural active site probes for enzymes. To understand the basic properties oflin-benzo-ATP and-ADP, protolysis and Mg2+ and Ca2+, binding are investigated between pH 6.2 and pH 8.5 by spectrophotometric and spectrofluorometric titrations. Based on a reaction model, a set of equilibrium constants is determined which is consistent with all available experimental results. The pK values of the Mg2+ and Ca2+ complex oflin-benzo-ATP in the chosen medium are 4.6 and 4.1, respectively, and those for the corresponding diphosphate are 3.1 and 2.8, respectively. Fluorescence and absorption spectra are reported.This is a peer-reviewed conference proceeding article from the Third Conference on Methods and Applications of Fluorescence Spectroscopy, Prague, Czech Republic, October 18–21, 1993.  相似文献   

17.
The value of intrinsic chlorophyll fluorescence polarization, and the intensity in emission spectrum were investigated in leaf segments of Alocasia macrorrhiza under several stress conditions including different temperatures (25–50°C), various concentrations of NaCl (0–250 mM), methyl viologen (MV, 0–25 μM), SDS (0–1.0%) and NaHSO3 (0–80 μM). Fluorescence emission spectrum of leaves at wavelength regions of 500–800 nm was monitored by excitation at 436 nm. The value of fluorescence polarization (P value), as result of energy transfer and mutual orientation between chlorophyll molecules, was determined by excitation at 436 nm and emission at 685 nm. The results showed that elevated temperature and concentrations of salt (NaCl), photooxidant (MV), surfactant (SDS) and simulated SO2 (NaHSO3) treatments all induced a reduction of fluorescence polarization to various degrees. However, alteration of the fluorescence spectrum and emission intensity of F685 and F731 depended on the individual treatment. Increase in temperature and concentration of NaHSO3 enhanced fluorescence intensity mainly at F685, while an increase in MV concentration led to a decrease at both F685 and F731. On the contrary, NaCl and SDS did not cause remarkable change in fluorescence spectrum. Among different treatments, the negative correlation between polarization and fluorescence intensity was found with NaHSO3 treatments only. We concluded that P value being measured with intrinsic chlorophyll fluorescence as probe in leaves is a susceptible indicator responding to changes in environmental conditions. The alteration of P value and fluorescence intensity might not always be shown a functional relation pattern. The possible reasons of differed response to various treatments were discussed.  相似文献   

18.
A novel correction method for self‐absorption effects is proposed for extended X‐ray absorption fine structure (EXAFS) detected in the fluorescence mode on multilayer samples. The effects of refraction and multiple reflection at the interfaces are fully considered in this correction method. The correction is performed in k‐space before any further data analysis, and it can be applied to single‐layer or multilayer samples with flat surfaces and without thickness limit when the model parameters for the samples are known. The validity of this method is verified by the fluorescence EXAFS data collected for a Cr/C multilayer sample measured at different experimental geometries.  相似文献   

19.
In this paper, the determination of retinol, the structure with the most activity as vitamin A, was carried out in an aqueous micellar medium with a low quantity of a short-chain alcohol. The analytical technique used in this work was fluorescence, which gave us very much information qualitative and quantitative. The sensitivity of the method is higher than that obtained in other media; the detection limit is 0.03 mg L−1 and retinol was stable in solution for at least 5 days. The use of solid phase extraction (SPE) for organic samples, allowed us to change the organic matrix by a mixture CTAB 5%/n-butanol 10%/water 85% w/w/w with recoveries in retinol spiked samples close to 100%. In addition, the combination of SPE and fluorescence is a good preconcentration technique, sensitive and fast for the identification and determination of retinol, simultaneously.  相似文献   

20.
Steady-state and time-resolved fluorescence polarization studies have been carried out on acenaphthene (ACE) in low-temperature glass solutions and at room temperature. In the low-temperature glass the fluorescence polarization values vary considerably with both emission and excitation wavelength. There is a time dependence (on the nanosecond time scale) of the fluorescence anisotropy, r(t), at 77 K, which has a strong dependence upon the excitation and emission wavelengths. Under these conditions, the time-dependent decay of the anisotropy is not attributable to chromophoric motion. The observations are consistent with emission from two closely lying and interconverting excited states. Rate constants for the photophysical processes involved have been determined by fitting the data using a model proposed by Fleming et. al. The results are discussed with particular reference to the care required in using dynamic fluorescence polarization measurements to determine energy transfer rates in systems containing this chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号