首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选取氧化钐作为包覆材料, 采用浸渍法对已烧结好的纳米TiO2多孔薄膜电极进行修饰, 并将其应用于染料敏化太阳电池中, 研究了纳米级氧化钐包覆层厚度及均匀性对染料敏化太阳电池中电子注入效率和电子复合过程的影响和作用机制. 结果表明, 包覆层厚度对电子注入效率和电子复合具有明显影响, 且电子注入效率和电子寿命随包覆层厚度的增加而呈现相反的变化趋势, 包覆层厚度在0.4 nm以内, 电池性能最好.  相似文献   

2.
Addition of 4-tert-butylpyridine (4TBP) to redox electrolytes used in dye-sensitized TiO2 solar cells has a large effect on their performance. In an electrolyte containing 0.7 M LiI and 0.05 M I2 in 3-methoxypropionitrile, addition of 0.5 M 4TBP gave an increase of the open-circuit potential of 260 mV. Using charge extraction and electron lifetime measurements, this increases could be attributed to a shift of the TiO2 band edge toward negative potentials (responsible for 60% of the voltage increase) and to an increase of the electron lifetime (40%). At a lower 4TBP concentration the shift of the band edge was similar, but the effect on the electron lifetime was less pronounced. The working mechanism of 4TBP can be summarized as follows: (1) 4TBP affects the surface charge of TiO2 by decreasing the amount of adsorbed protons and/or Li+ ions. (2) It decreases the recombination of electrons in TiO2 with triiodide in the electrolyte by preventing triiodide access to the TiO2 surface and/or by complexation with iodine in the electrolyte.  相似文献   

3.
A hybrid of polymer/dispersed single-wall carbon nanotubes was utilized in networking a novel composition of gel electrolyte in dye-sensitized solar cells. The gel is composed of polyethylene glycol, polyvinyl pyrrolidone, single-wall carbon nanotubes, and I?/I3 ? as electrolyte. Formation of the less conductive polyiodide species in electrolyte was prohibited by the addition of single-wall carbon nanotubes leading to the excellent photovoltaic behavior of the cell under simulated standard illumination of the fabricated device owing to the increased open circuit voltage (0.47 V). Electrochemical impedance spectroscopy was employed to quantify the charge transport resistance and the electron lifetime at the TiO2 conduction band. Charge transport resistances at the TiO2/dye/electrolyte interface were determined for the cells consisting of the non-gel reference and our new gel electrolytes, and it was indicated that the charge recombination between injected electrons and electron acceptors (I3 ?) in the redox electrolyte was remarkably retarded. Electrochemical parameters obtained by the fitting showed all of the resistances increased as compared to liquid electrolyte dye-sensitized solar cells that can be related to the increase in viscosity of the gel, which hinders the ionic transportation through the electrolyte. These results were also confirmed by the electron lifetime analyses. The characteristic peak shifted to a lower frequency in the Bode phase plot for the cell containing gel electrolyte which is an indication of a longer electron lifetime in comparison with that of the cell containing very conventional liquid electrolyte.  相似文献   

4.
In this work, we report on fabrication and characterization of dye-sensitized solar cells based on TiO(2) nanotube/nanoparticle (NT/NP) composite electrodes. TiO(2) nanotubes were prepared by anodization of Ti foil in an organic electrolyte. The nanotubes were chemically separated from the foil, ground and added to a TiO(2) nanoparticle paste, from which composite NT/NP electrodes were fabricated. In the composite TiO(2) films the nanotubes existed in bundles with a length of a few micrometres. By optimizing the amount of NT in the paste, dye-sensitized solar cells with an efficiency of 5.6% were obtained, a 10% improvement in comparison to solar cells with pure NP electrodes. By increasing the fraction of NT in the electrode the current density increased by 20% (from 11.1 to 13.3 mA cm(-2)), but the open circuit voltage decreased from 0.78 to 0.73 V. Electron transport, lifetime and extraction studies were performed to investigate this behavior. A higher fraction of NT in the paste led to more and deeper traps in the resulting composite electrodes. Nevertheless, faster electron transport under short-circuit conditions was found with increased NT content, but the electron lifetime was not improved. The electron diffusion length calculated for short-circuit conditions was increased 3-fold in composite electrodes with an optimized NT fraction. The charge collection efficiency was more than 90% over a wide range of light intensities, leading to improved solar cell performance.  相似文献   

5.
A novel efficient metal free sensitizer containing asymmetric double donor-π-acceptor chains (DC) was synthesized for dye-sensitized solar cells (DSSCs). Comparing to 3.80%, 4.40% and 4.64% for the DSSCs based on the dyes with single chain (SC1, SC2) and cosensitizers (SC1 + SC2), the overall conversion efficiency reaches 6.06% for DC-sensitized solar cells as a result of its longer electron lifetime and higher incident monochromatic photon-to-current conversion efficiency.  相似文献   

6.
Record laboratory efficiencies of dye‐sensitized solar cells have been recently reported using an alkoxysilyl‐anchor dye, ADEKA‐1 (over 14 %). In this work we use time‐resolved techniques to study the impact of key preparation factors (dye synthesis route, addition of co‐adsorbent, use of cobalt‐based electrolytes of different redox potential, creation of insulating Al2O3 layers and molecule capping passivation of the electrode) on the partial charge separation efficiencies in ADEKA‐1 solar cells. We have observed that unwanted fast recombination of electrons from titania to the dye, probably associated with the orientation of the dyes on the titania surface, plays a crucial role in the performance of the cells. This recombination, taking place on the sub‐ns and ns time scales, is suppressed in the optimized dye synthesis methods and upon addition of the co‐adsorbent. Capping treatment significantly reduces the charge recombination between titania and electrolyte, improving the electron lifetime from tens of ms to hundreds of ms, or even to single seconds. Similar increase in electron lifetime is observed for homogenous Al2O3 over‐layers on titania nanoparticles, however, in this case the total solar cells photocurrent is decreased due to smaller electron injection yield from the dye. Our studies should be important for a broader use of very promising silyl‐anchor dyes and the further optimization and development of dye‐sensitized solar cells.  相似文献   

7.
二氢吲哚类染料用于染料敏化太阳能电池光敏剂的比较   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对四种二氢吲哚染料进行研究, 从中筛选出相对优秀的染料敏化太阳能电池光敏剂. 对前线分子轨道的计算表明, 二氢吲哚染料的前线分子轨道结构非常有利于染料激发态向TiO2电极的电子注入. 对真空中的紫外和可见光吸收光谱的计算表明, 二氢吲哚染料的吸收光谱与太阳辐射光谱匹配较好. 对染料分子的能级计算表明, 二氢吲哚染料的能级结构比较适合于I-/I-3作电解液的TiO2纳米晶太阳能电池的光敏剂. 二氢吲哚染料最低未占据分子轨道(LUMO) 能级均比TiO2晶体导带边能级高, 能够保证激发态染料分子高效地向TiO2电极转移电子. 二氢吲哚染料最高占据分子轨道(HOMO)的能级比I-/I-3能级低, 保证了失去电子的染料分子能够顺利地从电解液中得到电子. 与实验数据比较, 得出在提高染料敏化太阳能电池转换效率方面, 对染料的关键要求是LUMO能级的位置. 染料分子的稳定性是染料敏化太阳能电池使用寿命的关键因素. 通过对化学键键长的比较表明, 二氢吲哚染料的分子稳定性基本相同. 对计算结果的分析表明, 二氢吲哚染料1(ID1)的LUMO能级最高, 分子稳定性最好, 在酒精溶液中的吸收光谱与太阳辐射光谱匹配很好, 在同类染料中是较好的染料敏化太阳能电池光敏剂.  相似文献   

8.
A new water-based solution of ion-conductive polymeric gel electrolyte composed of polyethylene glycol and polyvinylpyrrolidone as gel-forming substances, I?/I3 ? as reversible redox couple, and various ratios of acetonitrile/water solvents was prepared and used in the fabrication of dye-sensitized solar cells. The effects of water on the electrochemical behavior of the prepared electrolyte solutions were examined by the cyclic voltammetry and electrochemical impedance spectroscopy techniques. Electrochemical impedance spectroscopy was employed to quantify the charge-transfer resistance and the electron lifetime at the TiO2 conduction band. The characteristic peak shifted to a lower frequency in the Bode phase plot, which is an indication of a longer electron lifetime for the cell containing more water content. Photovoltaic performance of the cells prepared by the new water-based gel electrolyte was studied. Changes in the current density–voltage (JV) characteristics can be explained based on the effect of water on the energetics and kinetics of charge transport and charge recombination in the dye-sensitized solar cells (DSSCs). It was observed that the increase in open-circuit voltage (V oc) and fill factor and decrease in J SC were noticeable for cells containing water-based gel electrolyte. It was indicated that the charge recombination between injected electrons and electron acceptors (polyiodide) in the redox electrolyte was remarkably inhibited by the increase of water. The photovoltaic performance stability of the DSSC containing gel electrolyte solution including 50 wt% of water was examined, and it was shown that it is more stable than conventional cells considerably for 168 h. Energy conversion efficiency of 2.30 % was achieved, under illumination with a simulated solar light of 100 mW cm?2.  相似文献   

9.
Electrochemical impedance spectroscopy (EIS) has been performed to investigate electronic and ionic processes in dye-sensitized solar cells (DSC). A theoretical model has been elaborated, to interpret the frequency response of the device. The high-frequency feature is attributed to the charge transfer at the counter electrode while the response in the intermediate-frequency region is associated with the electron transport in the mesoscopic TiO2 film and the back reaction at the TiO2/electrolyte interface. The low-frequency region reflects the diffusion in the electrolyte. Using an appropriate equivalent circuit, the electron transport rate and electron lifetime in the mesoscopic film have been derived, which agree with the values derived from transient photocurrent and photovoltage measurements. The EIS measurements show that DSC performance variations under prolonged thermal aging result mainly from the decrease in the lifetime of the conduction band electron in the TiO2 film.  相似文献   

10.
PbS electrode with high catalytic activity to Sn 2? reduction certificated by the measurements of electrochemical impedance spectroscopy and cyclic voltammetry was prepared by a simple method. The high catalytic activity makes it be a low-cost alternative counter electrode to platinum (Pt) to be used in quantum dots-sensitized solar cells (QDSSCs) based on polysulfide electrolyte. The photovoltaic performance enhancement of the quantum dots (QDs)-sensitized semiconductor thin films due to the PbS counter electrode was evaluated by fabricating QDSSCs based on CdSe QDs-sensitized ZnO (SnO2) thin film. CdSe QDs-sensitized ZnO thin film has the lower internal total series resistance and electron transmission time, the higher electron lifetime and electron collection efficiency than the CdSe QDs-sensitized SnO2 thin film. Replacing the Pt counter electrode with the PbS counter electrode leads to more improvement on the short circuit photocurrent density for QDSSC based on the ZnO thin film than the SnO2 thin film. Therefore, the process to limit the photovoltaic performance of CdSe QDs-sensitized solar cell and the possible way to improve the photovoltaic performance were analyzed.  相似文献   

11.
A combination of electron lifetime measurement in nanoparticles as a function of the Fermi level position at high resolution in the potential scale with a new model to describe this dependence provides a powerful tool to study the microscopic processes and parameters governing recombination in dye-sensitized solar cells. This model predicts a behavior divided in three domains for the electron lifetime dependence on open-circuit voltage that is in excellent agreement with the experimental results: a constant lifetime at high photovoltage, related to free electrons; an exponential increase due to internal trapping and detrapping and an inverted parabolla at low photovoltage that corresponds to the density of levels of acceptor electrolyte species, including the Marcus inverted region.  相似文献   

12.
Nanoporous-walled tungsten oxide (WO(3)) nanotubes (NTs), which had a more positive conduction band edge level compared to that of TiO(2), were applied to various organic dyes for dye-sensitized solar cells (DSSCs). The dye-sensitized WO(3) NTs displayed photosensitization for the organic dyes whose lowest unoccupied molecular orbital (LUMO) level was relatively positive to the conventional TiO(2) electrode and, thus, not applicable for electron injection to the TiO(2) electrode. Electron transport time and electron lifetime for the WO(3) electrode in the DSSCs were investigated. In comparison to the DSSCs based on TiO(2), SnO(2), and In(2)O(3), the WO(3) DSSCs displayed the longest lifetime. On the other hand, non-diffusion-like electron transport may be an issue to apply WO(3) for the DSSCs.  相似文献   

13.
A new design for a quasi‐solid‐state Forster resonance energy transfer (FRET) enabled solar cell with unattached Lucifer yellow (LY) dye molecules as donors and CdS/CdSe quantum dots (QDs) tethered to titania (TiO2) as acceptors is presented. The Forster radius is experimentally determined to be 5.29 nm. Sequential energy transfer from the LY dye to the QDs and electron transfer from the QDs to TiO2 is followed by fluorescence quenching and electron lifetime studies. Cells with a donor–acceptor architecture (TiO2/CdS/CdSe/ZnS‐LY/S2?‐multi‐walled carbon nanotubes) show a maximum incident photon‐to‐current conversion efficiency of 53 % at 530 nm. This is the highest efficiency among Ru‐dye free FRET‐enabled quantum dot solar cells (QDSCs), and is much higher than the donor or acceptor‐only cells. The FRET‐enhanced solar cell performance over the majority of the visible spectrum paves the way to harnessing the untapped potential of the LY dye as an energy relay fluorophore for the entire gamut of dye sensitized, organic, or hybrid solar cells.  相似文献   

14.
The performance of dye-sensitized solar cells (DSCs) was compared before and after processing the TiO(2) electrodes by minute-order electrochemical reactions with metal nitrates, where the metals were Mg, Zn, Al, and La, in 2-propanol. An overcoating of metal hydroxide was formed without the need for a sintering process, and magnesium hydroxide was found to give the largest improvement in photovoltage, fill factor, and eventually overall conversion efficiency of the DSCs. To analyze the nature of the improvement, the diffusion coefficient (D) and electron lifetime (tau) were determined. While little influence of overcoating on D was seen, a correlation between the increase in tau and V(oc) was observed for the metals examined here. The remarkable improvement in the electron lifetime of the DSCs suggests that an overcoating with magnesium hydroxide species function as the blocking layers at the fluorine-doped tin oxide and TiO(2) interfaces, thus contributing to the suppression of electron leakage, i.e., recombination processes between unidirectional transporting electrons and poly-iodides such as tri-iodide in the processed TiO(2) photoelectrode systems. The increase in V(oc) can be explained by the increased electron density caused by the increase in electron lifetime.  相似文献   

15.
One of the major factors in reducing a cost of commercial solar cells is the lifetime of the photovoltaic material. In this work, a deterioration of Si generated by solvent metal gathering method (SMG) and Si removed from damaged solar cells is analyzed and compared with electronic grade Si. The differences in heating and cooling cycles on the DTA curves of different solar grade Si and Cu–Si mixtures are compared. A nonequilibrium exothermic reaction in Si generated by SMG method is recorded in samples aged in room atmosphere for 1 year. The outcomes of the cooling cycles after the DTA analyses for various solar grades Si were not significantly differentiated from the referred electronic grade Si indicating that recrystallization of aged Si diminishes the problem related to agglomeration of Cu and oxygen on the surface of Si solar grade particles. The DTA tests showed that recrystallized Si from the deteriorated solar cells can be recycled as feedstock materials for solar cells applications while Si generated by SMG method can be used for blending in order to achieve a long lifetime of Si solar cells.  相似文献   

16.
Dye‐sensitized solar cells (DSCs) with nanotubular TiO2 electrodes of varying thicknesses are compared to DSCs based on conventional nanoparticulate electrodes. Despite the higher degree of order in one‐dimensional nanotubular electrodes, electron transport times and diffusion coefficients, determined under short‐circuit conditions, are comparable to those of nanoparticulate electrodes. The quasi‐Fermi level, however, is much lower in the nanotubes, suggesting a lower concentration of conduction band electrons. This provides evidence for a much higher diffusion coefficient for conduction band electrons in nanotubes than in nanoparticulate films. The electron lifetime and the diffusion length are significantly longer in nanotubular TiO2 electrodes than in nanoparticulate films. Nanotubular electrodes have a trap distribution that differs significantly from nanoparticulate electrodes; they possess relatively deeper traps and have a characteristic energy of the exponential distribution that is more than two times that of nanoparticulate electrodes.  相似文献   

17.
The role of the conducting glass substrate (fluorine-doped tin oxide, FTO) in the back reaction of electrons with tri-iodide ions in dye-sensitized nanocrystalline solar cells (DSCs) has been investigated using thin-layer electrochemical cells that are analogues of the DSCs. The rate of back reaction is dependent on the type of FTO and the thermal treatment. The results show that this back-reaction route cannot be neglected in DSCs, particularly at lower light intensities, where it is the dominant route for the back transfer of electrons to tri-iodide. This conclusion is confirmed by measurements of the intensity dependence of the photovoltages of DSCs with and without blocking layers. It follows that blocking layers should be used to prevent the back reaction in mechanistic studies in which the light intensity is varied over a wide range. Conclusions based on studies of the intensity dependence of the parameters of DSCs such as photovoltage and electron lifetime in cells without blocking layers, must be critically re-examined.  相似文献   

18.
杨林  李阳  陈淑  张静  张敏  王鹏 《物理化学学报》2016,32(1):329-336
为了实现窄能隙有机光敏剂的理性设计,有必要全面理解发生在二氧化钛/染料/电解质复杂界面的激发态演化动力学。本文通过构建分别以苯并噻二唑-苯甲酸(BTBA)和吡啶并噻二唑-苯甲酸(PTBA)为电子受体的有机给受体染料,借助超快瞬态吸收光谱测量与理论模拟,我们发现在实际的二氧化钛/染料/电解质界面存在激发态多步弛豫与多态电子注入的过程。密度泛函理论及含时密度泛函理论计算表明,二氧化钛表面的光激发产生的"热"激发态染料分子会通过分子片段间的扭转运动发生显著的多步结构弛豫,最终形成共轭骨架具有醌式结构、更加平面化的平衡构型。通过对飞秒瞬态吸收光谱进行目标分析,我们发现相对于以苯并噻二唑-苯甲酸为电子受体的染料,以吡啶并噻二唑-苯甲酸为电子受体的染料呈现出较慢的电子注入速率与较短的激发态寿命,导致总的电子注入产率较低,给出了基于该染料所制备的太阳电池的外量子产率峰值低的原因。  相似文献   

19.
TiO2 nanotubes (TNTs) with large aspect ratio and large specific surface area were prepared from P25 (Nippon Aerosil) and applied to dye-sensitized titanium dioxide solar cells (DSSCs). Optimization of fabrication conditions, i.e., pH of the starting paste, sintering temperature for the TiO2 electrodes, electrolyte compositions of DSSCs gave the high conversion efficiency with improved open circuit voltage (V(oc)) and fill factor (FF) when compared to DSSCs made of P25. The evaluation of dye adsorption and the photo-injected electron transport such as electron diffusion coefficient (D) and electron lifetime (tau) in TNTs electrodes revealed that the higher efficiency resulted from increase of electron density with keeping much longer tau in TNTs electrodes than in P25 electrodes.  相似文献   

20.
Hydrophobically capped nanocrystals of formamidinium lead bromide (FAPbBr3) perovskite (PNC) show bright and stable fluorescence in solution and thin‐film states. When compared with isolated PNCs in a solution, close‐packed PNCs in a thin film show extended fluorescence lifetime (ca. 4.2 μs), which is due to hopping or migration of photogenerated excitons among PNCs. Both fluorescence quantum efficiency and lifetime decrease in a PNC thin film doped with fullerene (C60), which is attributed to channeling of exciton migration into electron transfer to C60. On the other hand, quenching of fluorescence intensity of a PNC solution is not accompanied by any change in fluorescence lifetime, indicating static electron transfer to C60 adsorbed onto the hydrophobic surface of individual PNCs. Exciton migration among close‐packed PNCs and electron transfer to C60 places C60‐doped PNC thin films among cost‐effective antenna systems for solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号