首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Results obtained in studying the structure of olefin and diene molecules, and complexes of these, in the ground and lower excited states by RHF, ROHF, GVB/DN, and 6-31G* quantum-chemical methods are presented. Attention is paid to the identity of the main structural and electronic parameters of triplet T 1 and singlet S 1 states forming a reactive fourfold spin-degenerate diradical equilibrium excited state (S·T)1 having the lowest energy. A new mechanism of cyclodimerization of ethylene and tetrafluoroethylene and anionic polymerization of dienes, involving the (S·T)1 states, is suggested.  相似文献   

3.
The structure of the conformationally flexible 2-fluoroethanal molecule (CH2FCHO, FE) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was investigated by ab initio quantum-chemical methods. The FE molecule in the S0 state was found to exist as two conformers, viz., as cis (the F—C—C—O angle is 0°) and trans (the F—C—C—O angle is 180°) conformers. On going both to the T1 and S1 states, the FE molecule undergoes substantial structural changes, in particular, the CH2F top is rotated with respect to the core and the carbonyl CCHO fragment becomes nonplanar. The potential energy surfaces for the T1 and S1 states are qualitatively similar, viz., six minima in each of the excited states of FE correspond to three pairs of mirror-symmetrical conformers. Based on the potential energy surfaces calculated for the FE molecule in the T1 and S1 states, the one-dimensional problems on the torsion and inversion nuclear motions as well as the two-dimensional torsion-inversion problems were solved.  相似文献   

4.
The possibility of excited‐state protomeric shifts in the biologically important molecule, alloxan, is investigated. We have focused on the S1 and T1 excited states of alloxan and its hydroxy tautomers. Modifications brought in by excitation on the relative stabilities, activation barriers, and optimized geometries, computed at the MNDO, AM1, and PM3 levels of approximation, have been discussed for both excited electronic states. The absorption and fluorescence spectra for the three tautomers are also discussed. Results show significant changes in the geometries on excitation, although the changes are similar for the singlet and triplet excited states. Though the relative stability orders do not change, the 2‐hydroxy tautomer is stabilized, while the 4‐hydroxy tautomer gets destabilized on excitation. The excited states are (n,π*) states, involving the promotion of a nonbonding oxygen lone pair from the CO? CO? CO moiety, which explains why the oxygens of this group become less basic and the 4‐hydroxy tautomer gets destabilized on excitation. However, the activation barriers do not reduce significantly on excitation, and this precludes the possibility of ground‐ or excited‐state proton transfer in the gas phase. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

5.
The chromium(III) complex [Cr(ddpd)2][BF4]3 shows two spin-flip emission bands in the near-infrared spectral region. These bands shift bathochromically by −14.1 and −7.7 cm−1 kbar−1 under hydrostatic pressure (Angew. Chem. Int. Ed. 2018 , 57, 11069). The present study elucidates the structural changes of the chromium(III) cations under pressure using density functional theory with periodic boundary conditions and the resulting effects on the excited state energies using high-level CASSCF-NEVPT2 calculations. The differences of the bands in pressure sensitivity are traced back to a different orbital occupation of the intraconfigurational excited states.  相似文献   

6.
In a system of electrons, there is a map connecting any external potential v with its electron density ρ v. In this work, we describe a procedure for inverting this potential-to-density map, so that potentials (if any) corresponding to a target density ρt can be obtained. We give the trial external potential v α , an analytic expression depending on a number of parameters α = (α1, …) and then minimize the least-squares integral ∫(ρ α ρt)2 d r by the conjugate gradient method, where ρ α is the density corresponding to v α . The implementation takes advantage of the analytic nature of v α . The procedure can be applied to any system and quantum chemistry model, and works both for ground and excited states, as well as for ensembles of states. The method is tested with some excited states of the particle-in-a-box model, confirming the lack of a Hohenberg–Kohn theorem for excited states. It is also applied to the first singlet excited state of the helium atom, where, apart from the nucleus–electron attraction potential, some generalized external potentials are found.  相似文献   

7.
Lanthanide luminescent materials play key roles in modern society, but their first-principles treatment remains a great challenge due to complex manifold of electronic excited states and the difficulty in performing excited state structural relaxations that is necessary to model luminescent properties. Herein, we propose a practical approach that combines embedded cluster model (ECM) based multi-configurational wave function theory (WFT) and occupancy constrained density-functional theory plus the Hubbard U correction (OC-DFT + U) to treat lanthanide doped luminescent materials, using LaF3:Ce3+, a typical scintillator with low symmetry, as a case study. We show that the combined approach yields accurate absorption energies with an error on the order of 200 cm−1, but the emission energies are significantly underestimated, the origin of which is further clarified by vibrationally resolved absorption and emission spectra calculation. This work demonstrates the possibility of combining ECM-based wave function theory and periodic DFT into a comprehensive computational scheme for lanthanide luminescent materials and highlights the limitations of the current implementation of OC-DFT + U for excited state structural optimization.  相似文献   

8.
Quantum-chemical calculations with the time-dependent density function theory (TDDFT) have been carried out for 5-phenyl-5H-phenanthridin-6-one (PP). For this molecule, dual fluorescence and in- tramolecular charge transfer (ICT) were experimentally observed. The B3LYP functional with 6-311 G (2d, p) basis set has been used for the theoretical calculations. The solvent effects have been described within the polarizable continuum model (PCM). Ground-state geometry optimization reveals that the phenyl/phenanthridinone dihedral angle equals 90.0°, a nearly perpendicular structure. Vertical ab- sorption energy calculations characterize the lower singlet excited states both in gas phase and in solvents. It can be found that the lower excited states have locally excitation (LE) feature. Through constructing the potential energy curves of both isolated and solvated systems describing the LE→ICT reaction and fluorescence emission, we obtain the enthalpy difference ΔH between the LE and ICT states, energy barrier Ea, and energy difference δEFC, indicating the structural changes taking place during the ICT reaction. Potential curve and calculated emission energies for both isolated and sol- vated systems show a dual fluorescence phenomenon, consisting of a LE emission band and a red-shifted ICT band. Our calculations including the solvent effects indicate that the dual fluorescence is brought about by the change in molecular structure connected with the planarization of the twisted N-phenylphenanthridinone during the ICT reaction.  相似文献   

9.
The electronic excited state reactivity of [Mn(im)(CO)3(phen)]+ (phen = 1,10-phenanthroline; im = imidazole) ranging between 420 and 330 nm have been analyzed by means of relativistic spin–orbit time-dependent density functional theory and wavefunction approaches (state-average-complete-active-space self-consistent-field/multistate CAS second-order perturbation theory). Minimum energy conical intersection (MECI) structures and connecting pathways were explored using the artificial force induced reaction (AFIR) method. MECIs between the first and second singlet excited states (S1/S2-MECIs) were searched by the single-component AFIR (SC-AFIR) algorithm combined with the gradient projection type optimizer. The structural, electronic, and excited states properties of [Mn(im)(CO)3(phen)]+ are compared to those of the Re(I) analogue [Re(im)(CO)3(phen)]+. The high density of excited states and the presence of low-lying metal-centered states that characterize the Mn complex add complexity to the photophysics and open various dissociative channels for both the CO and imidazole ligands. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
Summary The Fock space coupled cluster method and its application to atomic and molecular systems are described. The importance of conserving size extensivity is demonstrated by the electron affinities of the alkali atoms. Two types of intruder states are discussed, one attributable to the orbital energy spectrum and the other caused by two-electron interactions. They are illustrated by the excited states of Li2 and by1 S states of Be, respectively. It is shown how both problems may be solved using incomplete model spaces. The selection of the model space in a moderately dense spectrum is discussed in connection with N2 excited states.Supported in part by the U.S.-Israel Binational Science Foundation  相似文献   

11.
A new scheme of photo‐fluorescent emission origin, described as S0 (relaxed state)→Sn (Frank‐Condon state)→ Sm (relaxed state)→S0 (Frank‐Condon state), is presented to explain the multiple fluorescent emissions of squaraine dyes observed experimentally according to the configuration interaction singles calculations of relaxed excited states of a model compound, bis[4‐(N,N‐dimethylamino)phenyl]squaraine (SQ). It is exhibited that all triple fluorescent emissions of SQ have their significant origin in vertical electron transitions of different relaxed excited states. In addition, some important absorption peaks appearing in higher energy region are most likely to be responsible for the higher energy band observed in solid states of many squaraine dyes.  相似文献   

12.
Three rigid and structurally simple heterocyclic stilbene derivatives, (E)-3H,3′H-[1,1′-biisobenzofuranylidene]-3,3′-dione, (E)-3-(3-oxobenzo[c] thiophen-1(3H)-ylidene)isobenzofuran-1(3H)-one, and (E)-3H,3′H-[1,1′-bibenzo[c] thiophenylidene]-3,3′-dione, are found to fluoresce in their neat solid phases, from upper (S2) and lowest (S1) singlet excited states, even at room temperature in air. Photophysical studies, single-crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3–9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi-colored emissions from upper excited states by “suppressing” Kasha's rule.  相似文献   

13.
Three rigid and structurally simple heterocyclic stilbene derivatives, (E)‐3H,3′H‐[1,1′‐biisobenzofuranylidene]‐3,3′‐dione, (E)‐3‐(3‐oxobenzo[c] thiophen‐1(3H)‐ylidene)isobenzofuran‐1(3H)‐one, and (E)‐3H,3′H‐[1,1′‐bibenzo[c] thiophenylidene]‐3,3′‐dione, are found to fluoresce in their neat solid phases, from upper (S2) and lowest (S1) singlet excited states, even at room temperature in air. Photophysical studies, single‐crystal structures, and theoretical calculations indicate that large energy gaps between S2 and S1 states (T2 and T1 states) as well as an abundance of intra and intermolecular hydrogen bonds suppress internal conversions of the upper excited states in the solids and make possible the fluorescence from S2 excited states (phosphorescence from T2 excited states). These results, including unprecedented fluorescence quantum yields (2.3–9.6 %) from the S2 states in the neat solids, establish a unique molecular skeleton for achieving multi‐colored emissions from upper excited states by “suppressing” Kasha's rule.  相似文献   

14.
 The Rydberg character of the excited states of free-base porphin (FBP) has been investigated by the ab initio configuration interaction singles (CIS) method and the state-averaged complete-active-space self-consistent-field method. Double-zeta basis sets augmented with s, p, and d Rydberg functions and d polarization functions have been employed. Two types of molecular orbitals sets, the restricted Hartree–Fock molecular orbitals obtained for the ground state (1A g ) and for the cation state (2A u ), have been used in the CIS calculations. All the calculations show that Rydberg-type excitations play important roles especially in the N bands. In this article we propose applying the model of a perturbed Rydberg series to interpret the excited states of FBP. By using this model, we have succeeded in analyzing the characteristics of the excited states as well as the experimental oscillator strengths, which have considerable magnitude even in the higher excited states. Received: 27 November 2000 / Accepted: 11 April 2001 / Published online: 27 June 2001  相似文献   

15.
16.
Matrix isolation IR spectroscopy and quantum-chemical calculations were jointly used to identify the system of bands related to Ni3 clusters. The positions of two low-lying electronic states were determined, and vibrational frequencies and geometry in the ground and excited states were estimated. In all the calculated states, Ni3 had the structure of an isosceles triangle. In the X 3 B 2 ground and a 3 B 1 lower excited states, this was an acute-angled triangle. In the b 3 B 2 and c 3 B 1 excited states, the triangle was obtuse-angled.  相似文献   

17.
Acylhydrazones is a novel yet underexploited class of molecular switches. In the present paper, we investigated the excited‐state decay of three model systems of acylhydrazones in the gas phase by a combination of electronic structure calculations and Tully's surface hopping dynamic simulations. Our computational results demonstrated that the S2(nNπ*) state decay of the three model systems leads to both the imine‐like photo‐isomerization through the S1(nNπ*)/S0 intersection and population of the S1(nOπ*) state that will cross to the triplet manifold. The position of phenyl substituent was found to have an effect on the ratio of the two S1 states. The present theoretical work provides some understandings of the intramolecular mechanism for de‐population of the excited electronic states of acylhydrazones.  相似文献   

18.
Hydrogen bonding of uracil with water in excited n → π* states has been investigated by means of ab initio SCF -CI calculations on uracil and water–uracil complexes. Two low-energy excited states arise from n → π* transitions in uracil. The first is due to excitation of the C4? O group, while the second is associated with excitation of the C2? O group. In the first n → π* state, hydrogen bonds at O4 are broken, so that the open water–uracil dimer at O4 dissociates. The “wobble” dimer, in which a water molecule is essentially free to move between its position in an open structure at N3? H and a cyclic structure at N3? H and O4 in the ground state, collapses to a different “wobble” dimer at N3? H and O2 in the excited state. The third dimer, a “wobble” dimer at N1? H and O2, remains intact, but is destabilized relative to the ground state. Although hydrogen bonds at O2 are broken in the second n → π* state, the three water–uracil dimers remain bound. The “wobble” dimer at N1? H and O2 changes to an excited open dimer at N1? H. The “wobble” dimer at N3? H and O4 remains intact, and the open dimer at O4 is further stabilized upon excitation. Dimer blue shifts of n → π* bands are nearly additive in 2:1 and 3:1 water:uracil structures. The fates of the three 2:1 water:uracil trimers and the 3:1 water:uracil tetramer in the first and second n → π* states are determined by the fates of the corresponding excited dimers in these states.  相似文献   

19.
We report here a summary of a limited CI calculation carried out on the Cv and Dh electronically excited states of bifluoride ion. This species is interesting as the prototype of a hydrogen-bonded system. It is determined that the lowest-lying excited states of the system are dissociative and/or autoionizing.  相似文献   

20.
An MCSCF model including the effects of solvent polarization is developed. The model is applied within the limitations of INDO approximations to look into the dominant effects of solvent polarization on the electronic structure in the excited states of a model system (e.g. * states of H2CO). Important features of macroscopic solvation-induced reorganization of electron density and some consequence thereof are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号