首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spectral broadening of femtosecond Cr:forsterite laser pulses is enhanced due to the use of tapered fibers. Supercontinuum generation with unamplified subnanojoule femtosecond Cr:forsterite laser pulses is observed for the first time. With 40-fs 0.6-nJ pulses of 1.25-μm Cr:forsterite laser radiation coupled into a tapered fiber having a taper waist diameter of about 2 μm and a taper waist length of 90 mm, we observed the spectra spanning more than two octaves at the output of the fiber in the regime of anomalous group-velocity dispersion. This result opens the way for the creation of compact femtosecond Cr:forsterite laser plus tapered fiber systems for optical metrology and biomedical applications. Received: 23 October 2001 / Accepted: 16 January 2002 / Published online: 14 March 2002  相似文献   

2.
Microstructure fibers are shown to allow the creation of new tunable sources for femtosecond nonlinear spectroscopy. These fibers provide a high efficiency of frequency upconversion of regeneratively amplified femtosecond pulses of a Cr:forsterite laser, permitting the generation of subpicosecond anti-Stokes pulses with a smooth temporal envelope and a linear positive chirp. These pulses from a microstructure fiber were used to measure the spectra of coherent anti-Stokes Raman scattering (CARS) of toluene solution by cross-correlating these pulses with the femtosecond second-harmonic output of the Cr:forsterite laser in boxcars geometry (XFROG CARS). PACS 42.65.Wi; 42.81.Qb  相似文献   

3.
Spectral superbroadening of subnanojoule femtosecond Cr:forsterite laser pulses is demonstrated for the first time in experiments with a tapered fiber. Coupling 40-fs 0.6-nJ pulses of 1.25-μm Cr:forsterite laser radiation into a tapered fiber with a taper waist diameter of about 2 μm and a taper waist length of 90 mm, we observed the spectra spanning more than two octaves at the output of the fiber. These experimental results open new horizons for the creation of compact femtosecond systems based on Cr:forsterite lasers and tapered fibers for optical metrology and biomedical applications.  相似文献   

4.
Femtosecond pulses of fundamental Cr:forsterite laser radiation are used as a pump field to tune the frequency of copropagating second-harmonic pulses of the same laser through cross-phase modulation in a photonic crystal fiber. Sub-100-kW femtosecond pump pulses coupled into a photonic crystal fiber with an appropriate dispersion profile can shift the central frequency of the probe field by more than 100 nm, suggesting a convenient way to control propagation and spectral transformations of ultrashort laser pulses.  相似文献   

5.
A quantum-dot-based saturable absorber has been demonstrated to initiate the generation of femtosecond pulses from a passively mode-locked solid-state laser. Control and tuning of the pulse duration from 58 ps to 158 fs was achieved. The 158 fs transform-limited pulses at 1280 nm are the shortest pulses that were produced from the Cr:forsterite laser passively mode locked by an InAs/InGaAs quantum-dot semiconductor saturable absorber mirror.  相似文献   

6.
By inserting a low-reflectivity flat surface inside the oscillator cavity, we demonstrate a flexible and phase-insensitive method for multiplying the repetition rate of a femtosecond passive mode-locked solid-state laser. Without mode matching and feedback control, we successfully multiplied the repetition rate of a passively mode-locked Cr:forsterite laser from 124 MHz to 1.24 GHz. High-repetition-rate femtosecond optical pulses with average power of >100 mW can be obtained with the demonstrated method.  相似文献   

7.
We report significant enhancement (+24 dB) of the optical beat note between a 657 nm cw laser and the second-harmonic generation of the tailored continuum at 1314 nm generated with a femtosecond Cr:forsterite laser and a nonlinear fiber Bragg grating. The same continuum is used to stabilize the carrier-envelope offset frequency of the Cr:forsterite femtosecond laser and permits improved optical stabilization of the frequency comb from 1.0 to 2.2 microm. Using a common optical reference at 657 nm, a relative fractional frequency instability of 2.0 x 10(-15) is achieved between the repetition rates of Cr:forsterite and Ti:sapphire laser systems in 10 s averaging time. The fractional frequency offset between the optically stabilized frequency combs of the Cr:forsterite and Ti:sapphire lasers is +/-(0.024 +/- 6.1) x 10(-17).  相似文献   

8.
Wei Z  Kobayashi Y  Zhang Z  Torizuka K 《Optics letters》2001,26(22):1806-1808
We report a novel technique for the synchronization of two different femtosecond solid-state lasers by crossing of both laser pulses in a Kerr medium. Stable dual-wavelength femtosecond pulses at central wavelengths of 820 and 1250 nm have been obtained. The tolerance of cavity-length mismatch is ~0.6mum , where the pulse widths of the Ti:sapphire and the Cr:forsterite lasers are 18 and 40 fs, respectively, at average powers of 600 and 110 mW. The typical timing jitter derived from the cross correlation is less than 3 fs.  相似文献   

9.
We report a highly efficient and high power self-starting femtosecond Cr:forsterite laser pumped by a 1064-nm Yb doped fibre laser. Five chirped mirrors are used to compensate for the intra-cavity group-delay dispersion, and the mode-locking is initiated by a semiconductor saturable absorber mirror (SESAM). Under pump power of 7.9 W, stable femtosecond laser pulses with average power of 760mW are obtained, yielding a pump power slope efficiency of 12.3%. The measured pulse duration and spectral bandwidth (FWHM) are 46 fs and 45 nm; the repetition rate is 82 MHz.  相似文献   

10.
Wei Z  Kobayashi Y  Torizuka K 《Optics letters》2002,27(23):2121-2123
We observed and measured the relative carrier-envelope phase difference per round trip between synchronized femtosecond Ti:sapphire and Cr:forsterite mode-locked lasers. The relative carrier-envelope phase slip was directly recorded by heterodyning of the Cr:forsterite laser with the supercontinuum from the Ti:sapphire laser. We also obtained another phase relation by superimposing the third harmonic of the Cr:forsterite laser with the second harmonic of the Ti:sapphire laser. In the latter case we obtained a stable beat signal with a signal-to-noise ratio larger than 30 dB and found a dependence of the beat frequency on the cavity length.  相似文献   

11.
Hollow-core photonic-crystal fibers with a special dispersion profile are shown to allow phase-matched nonlinear optical interactions of isolated air-guided modes of high-intensity femtosecond laser pulses confined in the hollow fiber core. We present theoretical and experimental studies of the four-wave mixing of fundamental and second-harmonic pulses of a Cr:forsterite laser with an initial pulse duration of about 50 fs and an intensity on the order of 1014 W/cm2 in waveguide modes of a hollow photonic-crystal fiber with a core diameter of about 13μm.  相似文献   

12.
30-fs pulses at 1.22 microm are produced by a self-mode-locked Cr:forsterite laser and amplified in a Cr:forsterite regenerative amplifier by a chirped-pulse amplification technique. 54-fs, 1-GW pulses at a 1-kHz repetition rate are obtained.  相似文献   

13.
We study the effects related to two-photon absorption (TPA) in the microspectroscopy of the silicon photonic components based on coherent anti-Stokes Raman scattering (CARS) of femtosecond pulses. With 300-fs pulses of 1.24-μm Cr:forsterite laser radiation delivering pump and probe fields and a frequency-shifted soliton output of a large-mode area photonic-crystal fiber employed as a Stokes field, pronounced TPA effects have been observed in the CARS microspectroscopy of silicon components for pump-pulse intensities exceeding 10 GW/cm2.  相似文献   

14.
We report on a self-starting mode-locked femtosecond Cr:forsterite laser pumped by a diode-pumped Nd:YVO(4) laser. The mode locking is initiated by a semiconductor saturable-absorber mirror (SESAM). We also present the measured group delay of the forsterite crystal and the SESAM.  相似文献   

15.
Cho WB  Kim JW  Lee HW  Bae S  Hong BH  Choi SY  Baek IH  Kim K  Yeom DI  Rotermund F 《Optics letters》2011,36(20):4089-4091
High-quality monolayer graphene as large as 1.2×1.2?cm2 was synthesized by chemical vapor deposition and used as a transmitting saturable absorber for efficient passive mode-locking of a femtosecond bulk solid-state laser. The monolayer graphene mode-locked Cr:forsterite laser was tunable around 1.25?μm and delivered sub-100?fs pulses with output powers up to 230?mW. The nonlinear optical characteristics of the monolayer graphene saturable absorber and the mode-locked operation were then compared with the case of the bilayer graphene saturable absorber.  相似文献   

16.
Copropagating fundamental-wavelength and second-harmonic femtosecond pulses of Cr: forsterite laser radiation are used to study cross-phase-modulation-induced instabilities and frequency shifts in a photonic-crystal fiber. Parametric instability of the second-harmonic probe pulse induced through cross-phase modulation by the fundamental-wavelength pump pulse gives rise to distinct sidebands in the spectrum of the probe field transmitted through the fiber. The wavelength of these sidebands was tuned in our experiments within approximately 100 nm by varying the peak power and the delay time of the pump pulse, suggesting a convenient way of controlled parametric spectral transformation of ultrashort laser pulses.This revised version was published online in March 2005. In the previous version, the published online date was missing  相似文献   

17.
We present a compact, all-solid-state femtosecond Cr:forsterite laser. The laser is pumped by diodes through a double-clad fiber. Kerr-lens mode locking is initiated and stabilized by a semiconductor saturable-absorber mirror with a single InGaAs quantum well. This system generates transform-limited 80-fs pulses near 1.3microm . An average power of 68 mW with fluctuation of much less than 1% is obtained with 3.8 W of absorbed pump power. The stability, efficiency, compactness, and potential for scaling to higher power of this system make it an attractive short-pulse source for applications.  相似文献   

18.
Physical principles behind the control of light localization and nonlinear-optical interactions in micro-and nanostructured fibers are demonstrated. Transmission measurements on the cladding of nanostructured fibers having a form of a two-dimensional periodic structure with a pitch less than 500 nm have revealed the existence of a photonic band gap tunable within the range from 930 to 1030 nm. The influence of the structure of the holey-fiber cladding on the effective area of the waveguide mode and the spectral broadening of Ti:sapphire and Cr:forsterite femtosecond laser pulses is experimentally studied. It is shown that the increase in the air-filling fraction of a holey-fiber cladding results in a considerable enhancement of spectral broadening of short laser pulses due to the increase in the light localization degree in the fiber core.  相似文献   

19.
Chen  I.-H.  Chu  S.-W.  Sun  C.-K.  Cheng  P.-C.  Lin  B.-L. 《Optical and Quantum Electronics》2002,34(12):1251-1266
Molecular excitation by the simultaneous absorption of two photons provides intrinsic three-dimensional resolution in laser scanning fluorescence microscopy. Thus induced two-photon absorption and the accompanied multi-photon absorption/ionization not only cause photo-bleaching but also cell damage in the vicinity of the focal point. In this paper, we study the wavelength dependent cell damage induced by high intensity femtosecond near infrared lasers. The study was performed with a Ti:sapphire laser and a Cr:forsterite laser. With a longer output wavelength from a Cr:forsterite laser, multi-photon absorption and auto-fluorescence were found to be significantly suppressed and the destructive plasma formation was found to be greatly reduced. Sustained multi-photon spectra can be observed in most plant specimens with a tightly focused Cr:forsterite laser beam under long term irradiation with more than 100 mW laser average power. In contrast, multi-photon absorption induced destructive plasma formation were frequently observed with a tightly focused Ti:sapphire laser beam within seconds with more than 10 mW laser average power.  相似文献   

20.
Long-term optical phase-coherent two-color femtosecond pulses were generated by use of passively timing-synchronized Ti:sapphire and Cr:forsterite lasers. The relative carrier-envelope phase relation was fixed by an active feedback loop. The accumulated phase noise from 10 mHz to 1 MHz of the locked beat note was 0.43 rad, showing tight phase locking. The optical frequency fluctuation between two femtosecond combs was submillihertz, with a 1 s averaged counter measurement over 3400 s, leading to a long-term femtosecond frequency-comb connection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号