首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorogenic acid (CGA) is present in many plants, especially in green coffee, dry plums, and bilberries. It is an important bioactive polyphenol. Studies showed that CGA has an antioxidative, bacteriostatic, anticancer, antiviral, and anti-inflammatory activity. Despite great interest in this compound, its interaction with the lipid model membrane has not yet been investigated. To better understand the relationship between the biological activity of CGA and its interaction with biological membranes, the thermotropic behavior of model lipid membranes was investigated. The effect of CGA on the model lipid membrane, specifically on the lipid bilayer phase transitions, was examined by the combined methods: differential scanning calorimetry and fluorescence spectroscopy. In particular, the degree of packing order of the hydrophilic phase of the lipid bilayer was determined using the fluorimetric method with Laurdan and Prodan probes, while the fluorescence anisotropy of the hydrophobic phase with the DPH and TMA-DPH probes. The results of the study show that CGA incorporates mainly into the hydrophilic part of membrane, changing the packing order of the polar heads of lipids. No significant changes were recorded in membrane fluidity of the hydrophobic membrane region, for the fluorescence anisotropy practically did not change. One can thus infer that CGA does not penetrate deep into the hydrophobic area of the membrane.  相似文献   

2.
The properties of the interatomic voids present in fully hydrated dimyristoylphosphatidylcholine (DMPC)-cholesterol mixed membranes of different compositions are analyzed in detail using a generalized variant of the Voronoi-Delaunay method on the basis of computer simulation results. The systems investigated are chosen from both sides of the DMPC-cholesterol miscibility gap; the pure DMPC bilayer has also been included in the analysis as a reference system. The results obtained show that the empty space is organized in a more compact way, forming larger voids in the presence than in the absence of cholesterol. The voids located in the region of the rigid cholesterol rings become, on average, less spherical, oriented more parallel with the membrane normal axis with increasing cholesterol concentration, whereas an opposite effect of cholesterol is observed in the middle of the membrane among the chain terminal methyl groups. In general, the preferential orientation of the voids is found to strongly correlate with that of the molecules in the hydrocarbon phase of the membranes. The membranes are found to contain rather large voids, the volume of which can be an order of magnitude larger than the largest spherical cavities present in the systems. These voids are elongated or branching channels rather than big empty holes. The voids located among the DMPC and cholesterol molecules are lying preferably parallel with the membrane normal axis. The existence of such empty channels can be of great importance in the cross-membrane permeation of small, uncharged penetrants, in particular, of polar molecules.  相似文献   

3.
Methods for the separation and analysis of the phospholipid classes have been studied. The lipid extracts of normal and Plasmodium knowlesi- infected rhesus erythrocytes and of the parasite itself have been examined for phospholipid composition on an animal-to-animal basis. Several differences were apparent between the phospholipids of parasites and infected host cells. Phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine represented larger percentages in the parasite than in the host; the average phosphatidylinositol content was 1.8 % in infected host cells and 4.3 % in parasites. Sphingomyelin and phosphatidylserine were also strikingly different in the two membranes; in the parasite they averaged less than 20 % and 33 % respectively of their level in the infected red blood cell.  相似文献   

4.
The membrane formation of crystalline poly(ethylene-co-vinyl alcohol) (EVAL), poly(vinylidene fluoride) (PVDF), and polyamide (Nylon-66) membranes prepared by dry-cast process was studied. Membrane morphologies from crystalline polymers were found to be strongly dependent on the evaporation temperature. At low temperatures, all the casting solution evaporated into a particulate morphology that was governed by the polymer crystallization mechanism. The rise in the evaporation temperature changed EVAL membrane structure from a particulate to a dense morphology. However, as the temperature increased PVDF and Nylon-66 membranes still exhibited particulate morphologies. The membrane structures obtained were discussed in terms of the characteristics of polymer crystallization in the casting solution theoretically. At elevated temperatures the crystallization was restricted for the EVAL membrane because the increase rate in the polymer concentration was fast relative to the time necessary for growth of nuclei. Nonetheless, the time available for PVDF and Nylon-66 with stronger crystalline properties was large enough to form the crystallization-controlled particulate structure that differed in particle size only. In addition, particles in the PVDF membrane were driven together to disappear the boundary, but those in the Nylon-66 membrane exhibited features of linear grain boundary. The difference in particle morphology was attributed to the Nylon-66 with the most strongly crystalline property. Therefore, the kinetic difference in the crystallization rate of the polymer solution play an important role in dominating the membrane structure by dry-cast process.  相似文献   

5.
The effect of methanol on the change of phospholipid composition of germinating cotton seeds was studied. It was shown that adding methanol to the germination medium caused the formation of the new phospholipid phosphatidylmethanol. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 121–123, March–April, 2008.  相似文献   

6.
Technology designed to capture and store carbon dioxide (CO2) will play a significant role in the near-term reduction of CO2 emissions and is considered necessary to slow global warming. Nanoporous carbon (NPC) membranes show promise as a new generation of gas separation membranes suitable for CO2 capture.We have made supported NPC membranes from polyfurfuryl alcohol (PFA) at various pyrolysis temperatures. Positron annihilation lifetime spectrometry (PALS) and wide angle X-ray diffraction (WAXD) results indicate that the pore size decreases whilst the porosity increases with increasing pyrolysis temperature. The membrane performance results support these findings with a significant increase in permeance being seen with increasing pyrolysis temperature, which relates to the increase in porosity.Mixed gas performance measurements also show an increase in CH4 permeance as the operating temperature is increased from 35 to 200 °C, which can be related to an increase in the rate of diffusion. However, the selectivity decreases with increasing operating temperature due to the smaller changes in the CO2 permeance. These smaller changes in CO2 permeance can be related to the stronger adsorption of this gas on the carbon surface at lower operating temperatures. Interestingly, regardless of the original pyrolysis temperature, the selectivity at higher operating temperatures is similar, whereas the permeance remains related to this pyrolysis temperature.  相似文献   

7.
Cellulose acetate (CA) hollow fibers were spun via the dry‐jet wet spinning technique under various external coagulant compositions and temperatures. The surface morphology of the resulting hollow fiber was examined using field emission scanning electron microscopy (FESEM) and tapping mode atomic force microscopy (TMAFM). The pure water permeability (PWP) and the retention of dextran of the hollow fiber were also measured. The results showed that both the temperature and composition can affect greatly the surface morphology and hence the permeation performance of hollow fiber membranes when the temperature was over 55°C and the dimethyl formamide (DMF) content was higher than 15%. The on‐line draw ratio increased with the coagulant temperature and DMF content (in the range of 0 to 10%) in the external coagulant. The ultimate tensile strength also increased when the fibers were coagulated in 5–10% DMF and at 70°C. The PWP increased with the DMF content in the coagulant and the coagulant temperature. The retention of dextran decreased with the increase of the DMF content in the coagulant and the coagulant temperature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.  相似文献   

9.
We report the formation of a new class of supported membranes consisting of a fluid phospholipid bilayer coupled directly to a broadly tunable colloidal crystal with a well-defined photonic band gap. For nanoscale colloidal crystals exhibiting a band gap at the optical frequencies, substrate-induced vesicle fusion gives rise to a surface bilayer riding onto the crystal surface. The bilayer is two-dimensionally continuous, spanning multiple beads with lateral mobilities which reflect the coupling between the bilayer topography and the curvature of the supporting colloidal surface. In contrast, the spreading of vesicles on micrometer scale colloidal crystals results in the formation of bilayers wrapping individual colloidal beads. We show that simple UV photolithography of colloidal crystals produces binary patterns of crystal wettabilities, photonic stopbands, and corresponding patterns of lipid mono- and bilayer morphologies. We envisage that these approaches will be exploitable for the development of optical transduction assays and microarrays for many membrane-mediated processes, including transport and receptor-ligand interactions.  相似文献   

10.
The maximum degree of molecular orientation and deformation obtained by ultradrawing of high-density polyethylene in air is limited by formation of internal voids (both longitudinal separation of fibrils and perpendicular cracking), and thus values of Young's moduli which are achievable by ultradrawing techniques are also limited to values much below the theoretical limit for fully extended chains. Temperature has a significant effect on the critical draw ratios at which intensive void formation begins, and also on the draw ratio at which failure occurs during the ultradrawing. The temperature effect is observed only for high-density polyethylene having a wide molecular-weight distribution, and which can be drawn at higher temperatures (30–40°C below its melting point), e.g., Dow Chemical polyethylene LP51.1. As a result of ultradrawing at higher temperatures, transparent, ultrahigh modulus samples having draw ratios of order of 40 have been obtained. The higher drawing temperatures significantly reduce fibril separation, and perpendicular cracking is shifted toward higher draw ratios. Hence, with LP51.1 the highest Young's moduli (65–70 GPa) have been exhibited by the samples which were ultradrawn at 100–105°C.  相似文献   

11.
Abstract

Bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), specifically deuteriated at various positions of the sn-2-chain, have been studied by N.M.R. relaxation methods. Analysis of the experiments, employing a density matrix treatment based on the stochastic Liouville equation, provides new information about the dynamic organization of the different membrane phases (liquid-crystalline, intermediate and gel phases). The complex molecular dynamics are characterized by a super-position of inter- and intramolecular motions, comprising overall reorientation of phospholipid molecules and trans-gauche isomerization of individual chain segments. In addition, there is evidence for two-site rotational jumps of the sn-2-chains in the plane of the membrane. The results clearly demonstrate the particular advantage of N.M.R. relaxation studies in characterizing complex chemical and biological systems.  相似文献   

12.
Bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), specifically deuteriated at various positions of the sn-2-chain, have been studied by N.M.R. relaxation methods. Analysis of the experiments, employing a density matrix treatment based on the stochastic Liouville equation, provides new information about the dynamic organization of the different membrane phases (liquid-crystalline, intermediate and gel phases). The complex molecular dynamics are characterized by a super-position of inter- and intramolecular motions, comprising overall reorientation of phospholipid molecules and trans-gauche isomerization of individual chain segments. In addition, there is evidence for two-site rotational jumps of the sn-2-chains in the plane of the membrane. The results clearly demonstrate the particular advantage of N.M.R. relaxation studies in characterizing complex chemical and biological systems.  相似文献   

13.
Surfactant-templated polymer films prepared from polyethylenimine (PEI), cetyltrimethylammonium bromide (CTAB), and octaethylene glycol monohexadecyl ether (C(16)E(8)) were examined and the effect of increasing the percentage of nonionic surfactant in the micelles measured using both surface and bulk-sensitive techniques. It was found that there is a strong interaction between CTAB and C(16)E(8), although no interaction between the C(16)E(8) and PEI was observed. Generally, increasing the percentage of C(16)E(8) in the micelles decreases both the thickness and degree of order in the films; however, it was observed, depending on the conditions, that films could still be formed with as little as 20% cationic surfactant. Experiments on the CTAB/Brij56/PEI system were also performed and these indicate that it is similar to the CTAB/C(16)E(8)/PEI system.  相似文献   

14.
We have grown chemical gardens in different sodium silicate solutions from several metal-ion salts--calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate--with cations from period 4 of the periodic table. We have studied their formation process using photography, examined the morphologies produced using scanning electron microscopy (SEM), and analyzed chemical compositions using X-ray powder diffraction (XRD) and energy dispersive X-ray analysis (EDX) to understand better the physical and chemical processes involved in the chemical-garden reaction. We have identified different growth regimes in these salts that are dependent on the concentration of silicate solution and the nature of the cations involved.  相似文献   

15.
煤灰中矿物质组成对煤灰熔融温度的影响   总被引:3,自引:3,他引:3  
选取九种不同灰熔融温度的煤样,利用X射线衍射分析方法,研究了煤灰的矿物质组成及含量对灰熔融温度的影响,以及弱还原性气氛下不同温度煤灰熔融过程中的矿物演变过程及其对灰熔融温度的影响。结果表明,815℃煤灰的主要晶体矿物质组成为石英、硬石膏、赤铁矿、氢氧钙石和石灰等。一般情况下,煤灰中氢氧钙石含量低,硬石膏和赤铁矿含量高的煤,灰熔融温度较低。在还原性气氛下,随着温度的升高,煤灰中的石英、硬石膏、氢氧钙石等结晶矿物含量逐渐减少,生成新的矿物质。莫来石的生成是导致煤灰熔融温度高的主要原因。低灰熔融温度煤灰在加热过程中,在1 100℃时,钙长石和铁钙辉石的生成起到了降低煤灰熔融温度的作用。  相似文献   

16.
We carry out a detailed experimental and theoretical study of the influence of temperature on nanofiltration performance using the Desal5DK membrane. Experimental results for the permeate volume flux density and rejection of four neutral solutes (glycerin, arabinose, glucose, and sucrose) are presented for temperatures between 22 and 50 degrees C. Solute rejection is modeled using a hindered transport theory that allows us to unveil the crucial role played by changes in the membrane structural parameters (effective pore radius and membrane thickness) due to changes in temperature.  相似文献   

17.
A method for the simultaneous determination of amounts of major phospholipid classes and their fatty acid composition in erythrocyte membranes is described. The method consists in extraction of phospholipids from erythrocyte membranes, separation of phospholipid classes by high-performance liquid chromatography, methylation of phospholipids and determination of phospholipid-bound fatty acids by capillary gas chromatography. The amounts of phospholipid classes are calculated from the total weight of phospholipid-bound fatty acids and their average molecular weights. The method was applied to erythrocytes from rats. The results show that the method is reproducible and is useful for the determination of amounts of phospholipid classes and their fatty acid composition in small blood samples.  相似文献   

18.
19.
Institute of the Ecology of the Volga Basin, USSR Academy of Sciences, Tol'yatti. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 403–404, May–June, 1990.  相似文献   

20.
Persistent electrical polarization (heterocharged electret formation) has been studied as a function of stereotacticity, crystallinity, and molecular weight in membranes of poly(vinyl alcohol) (PVA) prepared via different synthetic routes. Membranes of PVA–sodium polystyrenesulfonate (PSSNa) and PVA–poly(vinyl acetate) (PVAc) copolymers and PVA–PVAc–PSSNa were also investigated. The degree of persistent polarization a pure PVA membrane can support, was found to vary according to isotactic > syndiotactic > heterotactic triad concentrations. Increases in crystallinity tend to decrease persistent polarization, and such changes in crystallinity are probably responsible for the above observed order, since measurements of persistent polarization on noncrystalline PVA–PSSNa membranes were found to vary according to syndiotactic > heterotactic > isotactic with regard to the PVA. Within PVA–PSSNa membranes the presence of acetate groups reverses the behavior of PSSNa from anhancer to an inhibitor of electret formation. The results all support a model in which heterocharged electret formation involves an ion displacement in the direction of the applied field and stabilization of this ion displacement by local hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号