首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charged droplet processing methodology, that utilizes electrodynamic levitation technology to control the trajectories of picoliter volume charged droplets and deliver them to a target plate at atmospheric pressure, has been developed. Termed wall-less sample preparation (WaSP), this methodology offers several features that could prove beneficial to the preparation of sample spots from separation column effluents for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. These features include solute pre-concentration factors of 10(1) to 10(3) due to volatile solvent evaporation prior to droplet deposition onto the target plate, high spatial accuracy of the deposition position of each processed droplet (+/-5 microm), and the ability to prepare sample spots as small as 20 microm in diameter from a single droplet. Here a new mode of operation of this methodology is described and used as an offline post-column pre-concentrating interface between capillary liquid chromatography (capLC) and a target plate for offline MALDI-MS. Using a fraction from the capLC separation of peptides produced by the proteolytic digestion of the protein cytidine 5'-triphosphate:phosphocholine cytidylyltransferase, MALDI sample spots were prepared using the dried-droplet method, direct piezoelectric droplet dispensing, and the processing of piezo-dispensed droplets by WaSP. The sample spot morphology was investigated using light microscopy, and peptide ion abundances produced by MALDI were measured using time-of-flight (TOF) MS. The advantages of developing an online capLC/WaSP interface with MALDI-MS in the future are discussed along with some of the challenges that may be encountered in such an endeavor.  相似文献   

2.
A polymer microfabricated proteomic sample preparation and MALDI MS sample presentation device, the integrated selective enrichment target (ISET), comprising an array of perforated nanovials is reported. Each perforated nanovial can be filled with selective extraction media (microbeads) for purification and concentration of protein/peptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The main areas covered are the influence of the molding-process-induced surface roughness and how to address the lack of inherent conductivity in the polyetheretherketone (PEEK) material for optimal MALDI MS readout. Application of the disposable polymeric ISET devices for solid-phase extraction and phosphopeptide capture is also demonstrated.  相似文献   

3.
Electrospray interfacing of polymer microfluidics to MALDI-MS   总被引:1,自引:0,他引:1  
The off-line coupling of polymer microfluidics to MALDI-MS is presented using electrospray deposition. Using polycarbonate microfluidic chips with integrated hydrophobic membrane electrospray tips, peptides and proteins are deposited onto a stainless steel target followed by MALDI-MS analysis. Microchip electrospray deposition is found to yield excellent spatial control and homogeneity of deposited peptide spots, and significantly improved MALDI-MS spectral reproducibility compared to traditional target preparation methods. A detection limit of 3.5 fmol is demonstrated for angiotensin. Furthermore, multiple electrospray tips on a single chip provide the ability to simultaneously elute parallel sample streams onto a MALDI target for high-throughput multiplexed analysis. Using a three-element electrospray tip array with 150 microm spacing, the simultaneous deposition of bradykinin, fibrinopeptide, and angiotensin is achieved with no cross talk between deposited samples. In addition, in-line proteolytic digestion of intact proteins is successfully achieved during the electrospray process by binding trypsin within the electrospray membrane, eliminating the need for on-probe digestion prior to MALDI-MS. The technology offers promise for a range of microfluidic platforms designed for high-throughput multiplexed proteomic analyses in which simultaneous on-chip separations require an effective interface to MS.  相似文献   

4.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) on cluster-assembled super-hydrophilic nanoporous titania films deposited on hydrophobic conductive-polymer substrates feature a unique combination of surface properties that significantly improve the possibilities of capturing and processing biological samples before and during the MALDI-MS analysis without changing the selected sample target (multi-dimensional MALDI-MS). In contrast to pure hydrophobic surfaces, such films promote a remarkable biologically active film porosity at the nanoscale due to the soft assembling of ultrafine atomic clusters. This unique combination of nanoscale porosity and super-hydrophilicity provides room for effective sample capturing, while the hydrophilic-hydrophobic discontinuity at the border of the dot-patterned film acts as a wettability-driven containment for sample/reagent droplets. In the present work, we evaluate the performance of such advanced surface engineered reactive containments for their benefit in protein sample processing and characterization. We shortly discuss the advantages resulting from the introduction of the described chips in the MALDI-MS workflow in the healthcare/clinical context and in MALDI-MS bioimaging (MALDI-MSI).  相似文献   

5.
Iminodiacetic acid (IDA)-1,2-epoxy-9-decene has been synthesized and covalently linked to the surface of porous silicon wafer through a photochemical reaction. The negatively charged carboxylic acid groups on the porous silicon wafer are capable of binding oppositely charged species from sample solutions through electrostatic interactions. This allows the removal of contaminants prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) by simply washing the porous silicon surface. The carboxylic acid end groups on porous silicon can be used to selectively bind and concentrate target species in sample solutions. Furthermore, Fe(3+)-IDA-derivatized porous silicon was prepared to specifically and effectively concentrate phosphopeptides from the tryptic digests of phosphoproteins, followed by MALDI-MS analysis.  相似文献   

6.
To address immunocapture of proteins in large cohorts of clinical samples high throughput sample processing is required. Here a method using the proteomic sample platform, ISET (integrated selective enrichment target) that integrates highly specific immunoaffinity capture of protein biomarker, digestion and sample cleanup with a direct interface to mass spectrometry is presented. The robustness of the on-ISET protein digestion protocol was validated by MALDI MS analysis of model proteins, ranging from 40 fmol to 1 pmol per nanovial. On-ISET digestion and MALDI MS/MS analysis of immunoaffinity captured disease-associated biomarker PSA (prostate specific antigen) from human seminal plasma are presented.  相似文献   

7.
Wei LM  Xue Y  Zhou XW  Jin H  Shi Q  Lu HJ  Yang PY 《Talanta》2008,74(5):1363-1370
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a standard analytical tool for protein identification and peptide sequencing. High sensitivity and resolution are two critical parameters for recording good peptide mass fingerprinting (PMF) of low abundance proteins. Here, we report a novel nanodiamond (ND) (normal size 3–10 nm) support for MALDI-MS target, over which -cyano-4-hydrocinnamic acid (CCA) crystallizes evenly. Good reproducibility of relative peak intensity (R.S.D. less than 11.8%) among sample spot (from ring to center) is achieved on ND support. Therefore, the search for “hot spots” during the analysis is not necessary, which is supporting for the automatic acquisition of data. Due to high absorbability of energy from the laser, the ND support improves ionization efficiency of samples. In general, the sensitivity of MS obtained on ND support can be enhanced three to four times compared to the conventional MALDI sample preparation technique. Sensitivity obtained on ND support ranges from 62.5 amol of Arg-vasopressin standard peptide to 1.0 fmol of myoglobin tryptic peptide mixture. Reduced spot size and increased sensitivity in MALDI-MS are also accomplished by ND support. With spot size reduced, the signal intensity of cytochrome c (Cyt c) tryptic peptide obtained on ND support is at least seven times greater than it acquired on stainless steel. And ND support has been found better tolerance for salt (up to 500 mM NaCl) to MALDI-MS analysis. All these properties make ND support a valuable tool for MALDI-MS identification of proteins.  相似文献   

8.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a rapid and sensitive analytical method that is well suited for determining molecular weights of peptides and proteins from complex samples. MALDI-MS can be used to profile the peptides and proteins from single-cell and small tissue samples without the need for extensive sample preparation. Furthermore, the recently developed MALDI imaging technique enables mapping of the spatial distribution of signaling molecules in tissue samples. Several examples of signaling molecule analysis at the single-cell and single-organ levels using MALDI-MS technology are highlighted followed by an outlook of future directions.  相似文献   

9.
The trend of miniaturization in bioanalytical chemistry is shifting from technical development to practical application. In matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), progress in miniaturizing sample spots has been driven by the needs to increase sensitivity and speed, to interface with other analytical microtechnologies, and to develop miniaturized instrumentation.We review recent developments in miniaturizing sample spots for MALDI-MS. We cover both target modification and microdispensing technologies, and we emphasize the benefits with respect to sensitivity, throughput and automation.We hope that this review will encourage further method development and application of miniaturized sample spots for MALDI-MS, so as to expand applications in analytical chemistry, protein science and molecular biology.  相似文献   

10.
In this study various methods of sample preparation and matrices were investigated to determine optimum collection and analysis criteria for fungal analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The fungal samples were applied to the MALDI sample target as untreated, sonicated, or acid/heat treated samples, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution was layered over the dried samples and analyzed by MALDI-MS. Statistical analysis showed that simply using double-stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, and required the least sample handling.  相似文献   

11.
Our experiments show that it is possible to detect different types of recombinant human erythropoietins (rhEPOs), EPO-alpha, EPO-beta and novel erythropoesis stimulating protein (NESP), based on exact molecular weight (MW) determination by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) applying a high-resolution time-of-flight (TOF) mass analyser in the linear mode. Detection limits for the highly purified, intact glycoproteins were achievable in the low fmol range (25-50 fmol) using a sample preparation method applying a hydrophobic sample support (DropStop) as MALDI target surface. These results are very promising for the development of highly sensitive detection methods for a direct identification of rhEPO after enrichment from human body fluids. During our investigation we were able to differentiate EPO-alpha, EPO-beta and NESP based on distinct molecular substructures at the protein level by specific enzymatic reactions. MW determination of the intact molecules by high resolving one-dimensional sodium dodecyl sulfate /polyacrylamide gel electrophoresis (1D SDS-PAGE) and isoform separation by planar isoelectric focusing (IEF) was compared with MALDI-MS data. Migration differences between the rhEPOs were observed from gel electrophoresis, whereby MWs of 38 kDa in the case of EPO-alpha/beta and 49 kDa for NESP could be estimated. In contrast, an exact MW determination by MALDI-MS based on internal calibration revealed average MWs of 29.8 +/- 0.3 kDa for EPO-alpha/beta and 36.8 +/- 0.4 kDa for NESP. IEF separation of the intact rhEPOs revealed the presence of four to eight distinct isoforms in EPO-alpha and EPO-beta, while four isoforms, which appeared in the more acidic area of the gels, were detected by immunostaining in NESP. A direct detection of the different N- or O-glycoform pattern from rhEPOs using MALDI-MS was possible by de-sialylation of the glycan structures and after de-N-glycosylation of the intact molecules. Thereby, the main glycoforms of EPO-alpha, EPO-beta and NESP could be characterised based on their N-glycan composition. A microheterogeneity of the molecules based on the degree of sialylation of the O-glycan was observable directly from the de-N-glycosylated protein.  相似文献   

12.
Moon H  Wheeler AR  Garrell RL  Loo JA  Kim CJ 《Lab on a chip》2006,6(9):1213-1219
To realize multiplexed sample preparation on a digital microfluidic chip for high-throughput Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), several fluidic functions need to be integrated. These include the generation of multiple droplets from a reservoir and parallel in-line sample purification. In this paper, we develop two critical new functions in handling protein solutions and standard proteomic reagents with electrowetting-on-dielectric (EWOD) actuation, leading to an integrated chip for multiplexed sample preparation for MALDI-MS. The first is a voltage sequence designed to generate a series of droplets from each of the three reservoirs--proteomic sample, rinsing fluid, and MALDI reagents. It is the first time that proteomic reagents have been dispensed using EWOD in an air (as opposed to oil) environment. The second is a box-in-box electrode pattern developed to allow droplet passing over dried sample spots, making the process of in-line sample purification robust for parallel processing. As a result, parallel processing of multiple sample droplets is demonstrated on the integrated EWOD-MALDI-MS chip, an important step towards high-throughput MALDI-MS. The MS results, collected directly from the integrated devices, are of good quality, suggesting that the tedious process of sample preparation can be automated on-chip for MALDI-MS applications as well as other high-throughput proteomics applications.  相似文献   

13.
An integrated analytical strategy for enrichment, detection and sequencing of phosphorylated peptides by matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS/MS) is reported. o-Phosphoric acid was found to enhance phosphopeptide ion signals in MALDI-MS when used as the acid dopant in 2,5-dihydroxybenzoic acid (2,5-DHB) matrix. The effect was largest for multiply phosphorylated peptides, which exhibited an up to ten-fold increase in ion intensity as compared with standard sample preparation methods. The enhanced phosphopeptide response was observed during MALDI-MS analysis of several peptide mixtures derived by proteolytic digestion of phosphoproteins. Furthermore, the mixture of 2,5-DHB and o-phosphoric acid was an excellent eluant for immobilized metal affinity chromatography (IMAC). Singly and multiply phosphorylated peptide species were efficiently recovered from Fe(III)-IMAC columns, reducing sample handling for phosphopeptide mapping by MALDI-MS and subsequent phosphopeptide sequencing by MALDI-MS/MS. The enhanced response of phosphopeptide ions in MALDI facilitates MS/MS of large (>3 kDa) multiply phosphorylated peptide species and reduces the amount of analyte needed for complete characterization of phosphoproteins.  相似文献   

14.
We have developed a method to screen for pseudouridines in complex mixtures of small RNAs using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). First, the unfractionated crude mixture of tRNAs is digested to completion with an endoribonuclease, such as RNase T1, and the digestion products are examined using MALDI-MS. Individual RNAs are identified by their signature digestion products, which arise through the detection of unique mass values after nuclease digestion. Next, the endonuclease digest is derivatized using N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMCT), which selectively modifies all pseudouridine, thiouridine and 2-methylthio-6-isopentenyladenosine nucleosides. MALDI-MS determination of the CMCT-derivatized endonuclease digest reveals the presence of pseudouridine through a 252 Da mass increase over the underivatized digest. Proof-of-concept experiments were conducted using a mixture of Escherichia coli transfer RNAs and endoribonucleases T1 and A. More than 80% of the expected pseudouridines from this mixture were detected using this screening approach, even on an unfractionated sample of tRNAs. This approach should be particularly useful in the identification of putative pseudouridine synthases through detection of their target RNAs and can provide insight into specific small RNAs that may contain pseudouridine.  相似文献   

15.
The oxidation numbers of metals in inorganic compounds were identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) by using their acetylacetonates, which are soluble in acetone. For the MALDI analysis of inorganic species insoluble in common solvents used for matrices, such as acetone, methanol, water, etc., a suspension method of sample preparation was developed. Turbid suspensions of inorganic species in the solvent were spotted on the sample holder with chelating reagents, as in the conventional sample preparation for MALDI-MS. Chemical reaction between the inorganic species and the chelating reagents occurred in the plume after irradiation by laser light. Metal oxides were also analyzed by this method, and samples with different oxidation numbers gave different mass spectra. These results suggest that many other metal oxides with different oxidation numbers could be identified if suitable chelating reagents are chosen for sample preparation for MALDI-MS.  相似文献   

16.
The application of whole cell analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has emerged as a valuable tool for rapidly identifying/detecting bacteria. This technique requires minimal sample preparation and is simple to perform, but is generally limited to purified samples of bacteria at concentrations greater than 1.0 x 10(6) cells/mL. In this paper, we describe a bacterial detection method that integrates immunomagnetic separation with bacteriophage amplification prior to MALDI-MS analysis. The developed method consists of three main stages: (1) isolation of a target bacterium by immunomagnetic separation; (2) infection of the immuno-captured bacterium with a lytic bacteriophage; and (3) assay of infected medium for bacteriophage progeny using MALDI-MS to produce a molecular weight signal for the virus capsid protein. With this technique, the presence of Escherichia coli in broth was determined in less then 2 h total analysis time at a concentration of approximately 5.0 x 10(4) cells/mL.  相似文献   

17.
A method of combining capillary electrophoresis (CE) using a surfactant-modified capillary with matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is described for protein analysis. The CE-MALDI-MS coupling is based on CE fraction collection of nanoliter volume samples in less than 5 microl of dilute acid. This offline coupling does not require any special instrumentation and can be readily performed with commercial instruments. Protein adsorption during CE separation is prevented by coating the capillary with the surfactant didodecyldimethylammonium bromide. This surfactant binds strongly with the capillary wall, hence it does not desorb significantly to interfere with subsequent MALDI-MS analysis. It is shown that the use of a dilute acid for CE fraction collection is advantageous in lowering the detection limit of MALDI-MS compared to using an electrophoretic buffer. The detection limit for proteins such as cytochrome c is 23 fmol injected for CE, or 1.2 fmol spotted for MALDI-MS. This sensitivity is comparable to alternative CE-MALDI-MS coupling techniques using direct CE sample deposition on the MALDI target. In addition, the fraction collection approach has the advantage of allowing multiple reactions to be carried out on the fractioned sample. These reactions are very important in protein identification and structure analysis.  相似文献   

18.
Mass spectrometry-based strategies are widely used for mapping of post-translational modifications of phosphoproteins. However, the presence of large amounts of non-phosphopeptides seriously interferes by suppressing the intensities of signals for phosphopeptides in direct MALDI-MS techniques due to the low stoichiometry of protein phosphorylation. Several MALDI-MS approaches are known which use either nanoparticles (NPs) as affinity probes, or NPs as microwave heat absorbers. They assist in the enrichment of trace levels of phosphopeptides from complex protein digests and require minimal sample pretreatment, digestion times, and sample volume. This leads to enhance sensitivity and selectivity in the analysis of the phosphoproteomes. This review (with 89 refs.) summarizes and discusses recent developments in the field, with a particular focus on the potential use of nanomaterials such as metal oxides, metal NPs, NPs-coated target plates, and as core-shell nanocomposites acting as affinity probes and as heat absorbers in MALDI-MS analysis of phosphoproteomes.
Figure
We discuss recent developments in the field with the focus on the potential use of nanomaterials, including metal oxides, metal NPs, NPs-coated target plate, core-shell microsphere nanocomposites as affinity probes and as heat absorbers to enhance the performance of MALDI-MS to phosphoproteome analysis. Schematic representation of microwave tryptic digest of casein proteins and their enrichment using DDTC-Au NPs as affinity probes.  相似文献   

19.
An “off-line” combination of capillary electrophoresis (CE) with matrix-assisted laser-desorption mass spectrometry (MALDI-MS) has been developed for the structural characterization of CE-separated peptides and proteins. Using a sheath flow interface, similar to that developed for “on-line” CE—fast atom bombardment MS and CE—electrospray MS, an efficient sample isolation procedure has been developed which is applicable to bioorganic compounds in aqueous buffer solutions. This isolation procedure, with subsequent transfer to the MALDI-MS sample target, has been successfully used for the direct analysis of CE-separated proteins of M r up to 67 000, and a mixture of apolipoprotein AII monomer and homodimer, using sample amounts of less than 1 pmol.  相似文献   

20.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) of noncovalent protein complexes is difficult, due to the disruptive nature of processes occurring during MALDI sample preparation and ion formation. Sometimes the observation of intact noncovalent protein complexes with MALDI is only possible if data are acquired from the first laser shot fired at a fresh sample; this is called the 'first shot phenomenon'. To study the origin of the first shot phenomenon, we used MALDI-MS and confocal laser scanning microscopy (CLSM) to examine typical MALDI sample preparations with embedded protein complexes, labeled with fluorophores. Fluorescence energy transfer techniques allowed the differentiation between intact and dissociated protein complexes with CLSM. In cases where a first shot behavior was observed by MALDI-MS, it was found to be accompanied by localization of protein complexes at the exterior of the sample crystals. Segregation of the large protein complexes to the exterior and dissociation of the complexes in the crystal interior during sample crystallization can rationalize this observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号