首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effectiveness of two activation techniques, collision activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD), is compared for structural characterization of protonated and lithium-cationized macrolides and a series of synthetic precursors in a quadrupole ion trap (QIT). Generally, cleavage of the glycosidic linkages attaching the sugars to the macrolide ring and water losses constitute the major fragmentation pathways for most of the protonated compounds. In the IRMPD spectra, a diagnostic fragment ion assigned as the desosamine ion is a dominant ion that is not observed in the CAD spectra because of the higher m/z limit of the storage range required during collisional activation. Activation of the lithium-cationized species results in new diagnostic fragmentation pathways that are particularly useful for confirming the identities of the protecting groups in the synthetic precursors. Multi-step IRMPD allows mapping of the fragmentation genealogies in greater detail and supports the proposed structures of the fragment ions.  相似文献   

2.
A focused laser is used to make infrared multiphoton photodissociation (IRMPD) more efficient in a quadrupole ion trap mass spectrometer. Efficient (up to 100%) dissociation at the standard operating pressure of 1 × 10−3 Torr can be achieved without any supplemental ion activation and with shorter irradiation times. The axial amplitudes of trapped ion clouds are measured using laser tomography. Laser flux on the ion cloud is increased six times by focusing the laser so that the beam waist approximates the ion cloud size. Unmodified peptide ions from 200 Da to 3 kDa are completely dissociated in 2.5–10 ms at a bath gas pressure of 3.3 × 10−4 Torr and in 3–25 ms at 1.0 × 10−3 Torr. Sequential dissociation of product ions is increased by focusing the laser and by operating at an increased bath gas pressure to minimize the size of the ion cloud.  相似文献   

3.
4.
The relative binding energies of a series of pyridyl ligand/metal complexes of the type [M(I)L(2)](+) and [M(II)L(3)](2+) are investigated by using energy-variable collisionally activated dissociation in a quadrupole ion trap mass spectrometer. The pyridyl ligands include 1,10-phenanthroline and various alkylated analogues, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, and 2,2':6',2' '-terpyridine, and the metal ions include cobalt, nickel, copper, zinc, cadmium, calcium, magnesium, lithium, sodium, potassium, rubidium, and cesium. The effect of the ionic size and electronic nature of the metal ion and the polarizability and degree of preorganization of the pyridyl ligands on the threshold activation voltages, and thus the relative binding energies of the complexes, are evaluated. Correlations are found between the binding constants of [M(II)L(3)](2+) complexes in aqueous solution and the threshold activation voltages of the analogous gas-phase complexes determined by collisionally activated dissociation.  相似文献   

5.
The number and types of diagnostic ions obtained by infrared multiphoton dissociation (IRMPD) and collision-induced dissociation (CID) were evaluated for supercharged peptide ions created by electrospray ionization of solutions spiked with m-nitrobenzyl alcohol. IRMPD of supercharged peptide ions increased the sequence coverage compared with that obtained by CID for all charge states investigated. The number of diagnostic ions increased with the charge state for IRMPD; however, this trend was not consistent for CID because the supercharged ions did not always yield the greatest number of diagnostic ions. Significantly different fragmentation pathways were observed for the different charge states upon CID or IRMPD with the latter yielding far more immonium ions and often fewer uninformative ammonia, water, and phosphoric acid neutral losses. Pulsed-Q dissociation resulted in an increase in the number of internal product ions, a decrease in sequence-informative ions, and reduced overall ion abundances. The enhanced sequence coverage afforded by IRMPD of supercharged ions was demonstrated for a variety of model peptides, as well as for a tryptic digest of cytochrome c.  相似文献   

6.
Dynamic control of bath gas pressure in a quadrupole ion trap (QIT) achieved high sensitivity and broad dynamic range infrared multiphoton dissociation (IRMPD). Conventional IRMPD is not sensitive because the bath gas pressure in the QIT needs to be kept at less than 1 mTorr for an effective dissociation, whereas the pressure should be about 20 mTorr for maximum trapping efficiency during ion accumulation. By switching the bath gas pressure between about 20 mTorr during the ion accumulation period and less than 0.6 mTorr during the IRMPD period, it was possible to achieve both maximum trapping efficiency and effective IRMPD. An optimized method for gas introduction enables the trapping efficiency to remain constant during the accumulation period, which permits a broad dynamic range measurement.  相似文献   

7.
The use of orthogonal acceleration quadrupole time-of-flight (Q-TOF) mass spectrometry to determine the collisionally activated dissociation (CAD) of a test compound 1-(3-[5-[1,2,4-triazol-4-yl]-1H-indol-3-yl]propyl)-4-(2-[3-fluorophenyl]ethyl)piperazine is described. At unit-mass resolution the identity of many ions is ambiguous because of the complexity of the resulting product ion spectrum. Using the high resolution capabilities of the Q-TOF instrument, exact masses for each fragment were determined. These data were used to infer molecular formulas for each fragment through software interpretation and, by further applying chemical intuition, the majority of ions were fully assigned. Additionally, by utilizing in-source fragmentation at high cone voltage, analyses of second-generation products allowed derivation of a consistent sequential fragmentation pathway. This study clearly demonstrates the power of Q-TOF mass spectrometry to elucidate complex product ion spectra.  相似文献   

8.
Energy-variable collisionally activated dissociation (CAD) was used to analyze noncovalent interactions of protonated peptide/polyether complexes in a quadrupole ion trap complexes were formed with a series of four polyether host molecules and thirteen peptide molecules. Comparison of dissociation thresholds revealed correlations between the gas-phase basicities of the peptides and polyether molecules and the onset of dissociation. The dissociation thresholds of complexes containing the tripeptides or pentapeptides were inversely proportional to the gas-phase basicities of the sites of protonation of the peptides. Intramolecular hydrogen bonding of the pentapeptides affected the observed dissociation thresholds as well. The dissociation thresholds also scaled proportionally to the gas-phase basicities of the polyethers in the complexes, and the importance of the conformational flexibility of the polyether ligand was confirmed for one of the histidine-containing tripeptide complexes.  相似文献   

9.
A simplified method for determining the sequence and branching of oligosaccharides using infrared multiphoton dissociation (IRMPD) in a quadrupole ion trap (QIT) is described. An IR-active boronic acid (IRABA) reagent is used to derivatize the oligosaccharides before IRMPD analysis. The IRABA ligand is designed to both enhance the efficiency of the derivatization reaction and to facilitate the photon absorption process. The resulting IRMPD spectra display oligosaccharide fragments that are formed from primarily one type of diagnostic cleavage, thus making sequencing straightforward. The presence of sequential fragment ions, a phenomenon of IRMPD, permit the comprehensive sequencing of the oligosaccharides studied in a single stage of activation. We demonstrate this approach for two series of oligosaccharides, the lacto-N-fucopentaoses (LNFPs) and the lacto-N-difucohexaoses (LNDFHs).  相似文献   

10.
The design of a novel multipass optical arrangement for use with infrared multiple photon dissociation (IRMPD) in the quadrupole ion trap is presented. This design circumvents previous problems of limited IR laser power, small IR absorption cross sections for many molecules, and the limited ion statistics of trapping and detection of ions for IRMPD in the quadrupole ion trap. In contrast to previous designs that utilized the quadrupole ion store, the quadrupole ion trap was operated in the mass selective instability mode with concurrent resonance ejection. The instrumental design consisted of a modified ring electrode with three spherical concave mirrors mounted on the inner surface of the ring. This modified design allowed for eight laser passes across the radial plane of the ring electrode. IRMPD of protonated bis(2-methoxyethyl)ether (diglyme) was used to characterize the performance of the multipass ring electrode. Two consecutive reactions for the IRMPD of protonated diglyme were observed with a lower energy channel predominant at less than 0.6 J (irradiation times from 1 to 30 ms) and a second channel predominant at energies greater than 0.6 J (irradiation times > 30 ms). Other studies presented include a discussion of the dissociation kinetics of protonated diglyme, the use of a pulsed valve for increased trapping efficiency of parent ion populations, and the effects of laser wavelength and of ion residence time in the radial plane of the ring electrode on photodissociation efficiency.  相似文献   

11.
In a previous paper, we reported preliminary results on the multiphoton dissociation of a linear triatomic molecule. This model consists of a dissociative mode (ν3) coupled non-linearly to an IR inactive harmonic mode (ν1). We present here extensive calculations of the dissociation probability as a function of the laser frequency for different pulses of constant fluence. It is shown that dissociation occurs at frequencies either very red-shifted from the ν3 IR active absorption band or located at the ν2 and ν3 bands (due to a 2:1 Fermi resonance). A Hose—Taylor analysis reveals that in the former case excitation proceeds through an anharmonic ladder, while a harmonic one is used in the latter case. In both cases essentially Q states are populated during the excitation process. The dissociation process has been dealt with explicitly by using metastable states to represent the continuum. It is shown that the actual structure of the continuum, due to the presence of Feshbach resonant states, has no real influence on the dissociation probability. Fragment analysis for the ABC → nhw A + BC dissociation process has been performed and shows only a slight departure from statistical distributions, except at very high intensities.  相似文献   

12.
The fragmentation of peptides and oligosaccharides in the gas phase was investigated by means of electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry coupled with dissociation by a laser-cleavage infrared multiphoton dissociation (IRMPD) technique. In this technique, an IR free-electron laser is used as a tunable source of IR radiation to cause cleavage of the ionized samples introduced into the FTICR cell. The gas-phase IRMPD spectra of protonated peptides (substance P and angiotensin II) and two sodiated oligosaccharides (sialyl Lewis X and lacto-N-fucopentaose III) were obtained over the IR scan range of 5.7-9.5 microm. In the IRMPD spectra for the peptide, fragment ions are observed as y/b-type fragment ions in the range 5.7-7.5 microm, corresponding to cleavage of the backbone of the parent amino acid sequence, whereas the spectra of the oligosaccharides have major peaks in the range 8.4-9.5 microm, corresponding to photoproducts of the B/Y type.  相似文献   

13.
Aluminum complexes of the type [Al(III) (flavonoid-H)2]+ are generated by electrospray ionization in order to allow differentiation of isomeric flavonoids by tandem mass spectrometry. The dominant species observed from the aluminum complexation reaction has a 1:2 aluminum(III):flavonoid stoichiometry. Differentiation of 18 flavonoids constituting seven isomeric series was achieved based on the collisionally activated dissociation patterns of the aluminum complexes. Characteristic fragmentation pathways allow identification of the site of glycosylation, the type of saccharide (rutinose versus neohesperidose) and the type of bond between the C-2 and C-3 atoms (thus distinguishing flavanones from flavonols and flavones). Two stable coordination geometries of the aluminum complex of apigenin were identified. The non-planar structure with a plane-angle of nearly 90 degrees is 25.3 kcal mol-1 more favorable than the planar structure. The conformations of the complexes, which involve multiple interactions between the aglycone and disaccharide portions of the flavonoid with the metal ion, are significantly different for the isomeric flavonoids.  相似文献   

14.
A new method of selective ion storage in a quadrupole ion trap is described. Broadband waveforms were applied to the endcaps of an ion trap to eject unwanted ions by resonance excitation, which enhanced the storage of selected target ions. A unique trapping field amplitude modulation technique allowed the use of waveforms with fewer frequency components. The requirements and methods of calculations for frequency-optimized wave-forms are discussed. Advantages of this method include the reduction of target ion loss that results from collision-activated dissociation. In other applications, equivalent performance, relative to methods that use nonmodulated trapping fields combined with waveforms that have a higher frequency density, was shown.  相似文献   

15.
Infrared multiphoton dissociation (IRMPD) on a linear ion trap mass spectrometer is applied for the sequencing of small interfering RNA (siRNA). Both single-strand siRNAs and duplex siRNA were characterized by IRMPD, and the results were compared with that obtained by traditional ion trap-based collision induced dissociation (CID). The single-strand siRNA anions were observed to dissociate via cleavage of the 5′ P—O bonds yielding c- and y-type product ions as well as undergo neutral base loss. Full sequence coverage of the siRNA anions was obtained by both IRMPD and CID. While the CID mass spectra were dominated by base loss ions, accounting for ∼25% to 40% of the product ion current, these ions were eliminated through secondary dissociation by increasing the irradiation time in the IRMPD mass spectra to produce higher abundances of informative sequence ions. With longer irradiation times, however, internal ions corresponding to cleavage of two 5′ P—O bonds began to populate the product ion mass spectra as well as higher abundances of [a − Base] and w-type ions. IRMPD of siRNA cations predominantly produced c- and y-type ions with minimal contributions of [a − Base] and w-type ions to the product ion current; the presence of only two complementary series of product ions in the IRMPD mass spectra simplified spectral interpretation. In addition, IRMPD produced high abundances of protonated nucleobases, [G + H]+, [A + H]+, and [C + H]+, which were not detected in the CID mass spectra due to the low-mass cut-off associated with conventional CID in ion traps. CID and IRMPD using short irradiation times of duplex siRNA resulted in strand separation, similar to the dissociation trends observed for duplex DNA. With longer irradiation times, however, the individual single-strands underwent secondary dissociation to yield informative sequence ions not obtained by CID.  相似文献   

16.
Previous infrared multiphoton dissociation (IRMPD) experiments utilizing a quadrupole ion trap mass spectrometer yielded limited photodissociation efficiencies. Helium buffer gas continuously infused into the analyzer region at pressures of typically 1 x 10(-3) Torr to improve ion trap performance can collisionally quench photoexcited ions during the IRMPD process. Photodissociation experiments have indicated that uncorrected pressures below 2 x 10(-5) Torr are necessary to avoid collisional deactivation of photoexcited ions. This paper describes IRMPD in the quadrupole ion trap at reduced pressures utilizing a dual-pulsed introduction of helium buffer gas incorporated into the ion trap scan function. The pulsed introduction of helium buffer gas before ion injection allows the efficient trapping of ions injected from an electrospray source and the removal of helium before laser irradiation. A second pulse of helium directly before ion detection improves the intensity of the ion signal. The use of this dual-pulsed inlet of helium for improved IRMPD is demonstrated with the carbohydrate antibiotics neomycin and erythromycin. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Comparing fast atom bombardment and field desorption collisionally activated dissociation mass spectra of tetrabutyl ammonium salts it becomes evident that under fast atom bombardment conditions, besides desorption of intact salt cations, the ionization of intact salt molecules must be assumed. Alkyl ions formed under fast atom bombardment and not under field desorption collisionally activated dissociation conditions are ionization products of tetraalkyl ammonium salt molecules. Radical cations are produced by both techniques.  相似文献   

18.
Electron capture dissociation (ECD) in Fourier transform ion cyclotron resonance mass spectrometry coupled with electrospray ionization enhances the sequence elucidation of peptide nucleic acids compared with conventional low-energy collisionally activated dissociation (CAD). Examples are shown where ECD produced complete or extensive sequence coverage in PNAs six to ten nucleobases long. However, facile base losses from the reduced species and low abundances of backbone ECD fragments presented a significant problem. This was rationalized through the lower degree of charge solvation on the backbone compared to polypeptides. Combination of both CAD and ECD data is advantageous, as these techniques produce cleavages at different sites.  相似文献   

19.
We describe features of tandem mass spectra of lithiated adducts of triacylglycerol (TAG) species obtained by electrospray ionization mass spectrometry (ms) with low-energy collisionally activated dissociation (CAD) on a triple stage quadrupole instrument. The spectra distinguish isomeric triacylglycerol species and permit assignment of the mass of each fatty acid substituent and positions on the glycerol backbone to which substituents are esterified. Source CAD-MS2 experiments permit assignment of double bond locations in polyunsaturated fatty acid substituents. The ESI/MS/MS spectra contain [M + Li - (RnCO2H)]+, [M + Li - (RnCO2Li)]+, and RnCO+ ions, among others, that permit assignment of the masses of fatty acid substituents. Relative abundances of these ions reflect positions on the glycerol backbone to which substituents are esterified. The tandem spectra also contain ions reflecting combined elimination of two adjacent fatty acid residues, one of which is eliminated as a free fatty acid and the other as an alpha, beta-unsaturated fatty acid. Such combined losses always involve the sn-2 substituent, and this feature provides a robust means to identify that substituent. Fragment ions reflecting combined losses of both sn-1 and sn-3 substituents without loss of the sn-2 substituent are not observed. Schemes are proposed to rationalize formation of major fragment ions in tandem mass spectra of lithiated TAG that are supported by studies with deuterium-labeled TAG and by source CAD-MS2 experiments. These schemes involve initial elimination of a free fatty acid in concert with a hydrogen atom abstracted from the alpha-methylene group of an adjacent fatty acid, followed by formation of a cyclic intermediate that decomposes to yield other characteristic fragment ions. Determination of double bond location in polyunsaturated fatty acid substituents of TAG is achieved by source CAD experiments in which dilithiated adducts of fatty acid substituents are produced in the ion source and subjected to CAD in the collision cell. Product ions are analyzed in the final quadrupole to yield information on double bond location.  相似文献   

20.
A new approach that uses a hybrid Q-FTICR instrument and combines quadrupole collision-induced dissociation, hydrogen-deuterium exchange, and infrared multiphoton dissociation (QCID-HDX-IRMPD) has been shown to effectively separate and differentiate isomeric fragment ion structures present at the same m/z. This method was used to study protonated YAGFL-OH (free acid), YAGFL-NH2 (amide), cyclic YAGFL, and YAGFL-OCH3 (methyl ester). QCID-HDX of m/z 552.28 (C29H38N5O6) from YAGFL-OH reveals at least two distributions of ions corresponding to the b5 ion and a non-C-terminal water loss ion structure. Subsequent IRMPD fragmentation of each population shows distinct fragmentation patterns, reflecting the different structures from which they arise. This contrasts with data for YAGFL-NH2 and YAGFL-OCH3, which do not show two distinct H/D exchange populations for the C29H38N5O6 structure formed by NH3 and HOCH3 loss, respectively. Relative extents of exchange for C29H38N5O6 ions from six sequence isomers (YAGFL, AGFLY, GFLYA, FLYAG, LYAGF, and LFGAY) show a sequence dependence of relative isomer abundance. Supporting action IRMPD spectroscopy data are also presented herein and also show that multiple structures are present for the C29H38N5O6 species from YAGFL-OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号