首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
强晓刚  黄杰  王洋  宋海菁 《物理》2023,52(8):524-533
光量子芯片技术采用传统半导体微纳加工工艺,可在单个芯片上集成大量光量子器件,实现量子信息处理应用,具有高集成度、高精确度、高稳定性等优势。基于硅基集成光学技术的硅基光量子芯片,得益于其CMOS可兼容、非线性效应强、超高集成度等特点,在未来实现可实用化大规模光量子计算与信息处理应用方面展示出巨大潜力。文章对硅基集成光量子芯片技术进行介绍,包括硅基集成光学基础器件,硅基光量子芯片上光子的产生、操控和探测等技术,以及面向量子计算及量子信息处理应用方面大规模硅基光量子芯片技术的近期进展,并对面临的技术挑战与发展方向进行展望。  相似文献   

2.
The recent progress in integrated quantum optics has set the stage for the development of an integrated platform for quantum information processing with photons, with potential applications in quantum simulation. Among the different material platforms being investigated, direct‐bandgap semiconductors and particularly gallium arsenide (GaAs) offer the widest range of functionalities, including single‐ and entangled‐photon generation by radiative recombination, low‐loss routing, electro‐optic modulation and single‐photon detection. This paper reviews the recent progress in the development of the key building blocks for GaAs quantum photonics and the perspectives for their full integration in a fully‐functional and densely integrated quantum photonic circuit.

  相似文献   


3.
Entangled photon pairs must often be spatially separated for their subsequent manipulation in integrated quantum circuits. Separation that is both deterministic and universal can in principle be achieved through anti‐coalescent two‐photon quantum interference. However, such interference‐facilitated pair separation (IFPS) has not been extensively studied in the integrated setting, which has important implications on performance. This work provides a detailed review of IFPS and examines how integrated device dependencies such as dispersion impact separation fidelity and interference visibility. The analysis applies equally to both on‐chip and in‐fiber implementations. When coupler dispersion is present, the separation performance can depend on photon bandwidth, spectral entanglement and the dispersion. By design, reduction in the separation fidelity due to loss of non‐classical interference can be perfectly compensated for by classical wavelength demultiplexing effects. This work informs the design of devices for universal photon pair separation of states with tunable arbitrary properties.

  相似文献   


4.
Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.  相似文献   

5.
游建强 《物理》2010,39(12):810-815
超导量子器件能够展现宏观量子相干性.基于超导量子器件的量子计算是量子信息领域中的一个重要研究方向,同时,超导量子器件物理特性的研究也是目前凝聚态物理和量子光学领域的交叉前沿课题.文章简述了近年来在超导量子计算方面的一些重要结果和进展,并讨论了其研究现状和发展趋势.  相似文献   

6.
Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being timedependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.  相似文献   

7.
In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tomography will become very complicated,because it requires a global quantum state reconstruction.Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction,so direct measurement schemes have obtained...  相似文献   

8.
9.
In this paper we have reviewed the recent progresses on the ion trapping for quantum information processing and quantum computation. We have first discussed the basic principle of quantum information theory and then focused on ion trapping for quantum information processing. Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum computation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implementation of quantum networks.   相似文献   

10.
喻祥敏  谭新生  于海峰  于扬 《物理学报》2018,67(22):220302-220302
近年来,探索新的拓扑量子材料、研究拓扑材料的新奇物理性质成为凝聚态物理领域的一个热点.但是,由于合成、测量等手段的限制,人们难以在真实材料中实现和观测很多理论预言的材料及其物理性质,促使量子模拟日益成为研究量子多体系统的一个重要手段.作为全固态器件,超导量子电路是一个在扩展性、集成性、调控性上都具有巨大优势的人工量子系统,是实现量子模拟的重要方案.本文总结了利用超导量子电路对时间-空间反演对称性保护的拓扑半金属、Hopf-link半金属和Maxwell半金属等拓扑材料的量子模拟,显示出超导量子电路在模拟凝聚态物理系统方面具有广阔前景.  相似文献   

11.

We introduce a new criterion for designing 1 × N silica multimode interference power splitters using overlapping-image multimode interference analysis. This criterion requires that widths of multimode waveguides in the devices should be greater than 2 times the product of port number N and effective widths of output waveguides. Better device uniformity can be achieved when the new criterion is satisfied.  相似文献   

12.
We introduce a new criterion for designing 1 × N silica multimode interference power splitters using overlapping-image multimode interference analysis. This criterion requires that widths of multimode waveguides in the devices should be greater than 2 times the product of port number N and effective widths of output waveguides. Better device uniformity can be achieved when the new criterion is satisfied.  相似文献   

13.
刘凯  李文东  张闻钊  史鹏  任春年  顾永建 《物理学报》2012,61(12):120301-120301
受到Lanyon等(Lanyon B P et al 2008 Nature Physics. 5 134)利用高维Hilbert空间成功简化Toffoli门的启发, 本文将辅助维度应用到普适量子线路中, 结合Cosine-Sine Decomposition(CSD), Quantum Shannon Decomposition(QSD)等矩阵分解方法, 优化了两比特和三比特普适幺正量子线路, 给出了计算n比特普适量子线路复杂度的公式, 并利用线性光学和腔QED系统设计了实验方案. 结果表明, 两比特和三比特量子线路的复杂度已分别接近和优于目前最优结果, 且随着比特数的增加, 本方案的优势愈加明显.  相似文献   

14.
H Zbinden  J Brendel  W Tittel  N Gisin 《Pramana》2001,56(2-3):349-355
Entanglement, one of the most important features of quantum mechanics, is at the core of the famous Einstein-Bohr philosophical debate [1] and is the principal resource for quantum information processing [2]. We report on new experimental investigations of the properties of entangled photon pairs with emphasis on the tension between quantum mechanics and relativity [3,4]. Entangled photons are sent via an optical fiber network to two villages near Geneva, separated by more than 10 km where they are analyzed by interferometers [5]. The photon pair source is set as precisely as possible in the center so that the two photons arrive at the detectors within a time interval of less than 5 ps (corresponding to a path length difference of less than 1 mm). This sets a lower bound on the ‘speed of quantum information’ to 107 times the speed of light. Next, one detector is set in motion [6] so that both detectors, each in its own inertial reference frame, are first to do the measurement! The data always reproduces the quantum correlations.  相似文献   

15.
A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one-parameter family of evolution rules which are best interpreted as those for a one-particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second, of which, to multiple interacting particles, is the correct definition of a quantum lattice gas.  相似文献   

16.
田晓慧  尚鸣昊  祝世宁  谢臻达 《物理》2023,52(8):534-541
铌酸锂材料具有宽的透光范围和高的非线性光学、电光、声光、热光系数,且化学性能稳定,是理想的光子集成芯片的衬底材料。在量子光学领域,人们已经发展出一系列铌酸锂基集成器件,能够实现光子态的高效率产生、调控、频率转换、存储和异质集成的单光子探测,有望实现全集成的频率态操控、确定性多光子态制备和单光子间相互作用,最终形成全功能集成的有源光量子芯片,推动量子物理基础研究和光量子信息应用发展。文章回顾了基于铌酸锂基量子集成的研究进展,并对其在未来光量子信息时代的机遇与挑战进行探讨。  相似文献   

17.
郭亚楠  薛文瑞  张文梅 《物理学报》2009,58(6):4168-4174
设计了一种双椭圆纳米金属棒表面等离子体波导,采用频域有限差分法,对这种波导所支持的基模的能流密度分布、有效折射率和传播长度随几何结构参数和工作波长的依赖关系进行了分析.结果表明,沿纵向的能流主要分布在两个椭圆金属棒所形成的中间区域,且越靠近金属棒的弧形边,沿纵向的能流越大.通过调节两个金属棒的中心距离以及它们的两个半轴的大小,可以调节模式的有效折射率和传播长度.在工作波长确定的条件下,相对于a=b的情形来说,在a<b时,场与金属表面接触的面积较大,场 关键词: 集成光学 光波导 表面等离子体波导  相似文献   

18.
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.  相似文献   

19.
A scheme for measuring complex temperature partition functions of Ising models is introduced. Two applications of this scheme are presented. First, through appropriate Wick rotations, those amplitudes can be analytically continued to yield estimates for partition functions of Ising models. Bounds on the estimated error are provided through a central-limit theorem whose validity extends beyond the present context; it holds for example for estimations of the Jones polynomial. The kind of state preparations and measurements involved in this application can be made independent of the system size or the parameters of the system being simulated. Second, the scheme allows to accurately estimate non-trivial invariants of links. Another result concerns the computational power of estimations of partition functions for real temperature classical ferromagnetic Ising models. We provide conditions under which estimating such partition functions allows to reconstruct scattering amplitudes of quantum circuits, making the problem BQP-hard. We also show fidelity overlaps for ground states of quantum Hamiltonians, which serve as a witness to quantum phase transitions, can be estimated from classical Ising model partition functions. Finally, we discuss how accurate corner magnetisation measurements on thermal states of two-dimensional Ising models lead to fully polynomial random approximation schemes (FPRAS) for the partition function.  相似文献   

20.
Planar waveguides with ultra‐low optical propagation loss enable a plethora of passive photonic integrated circuits, such as splitters and combiners, filters, delay lines, and components for advanced modulation formats. An overview is presented of the status of the field of ultra‐low loss waveguides and circuits, including the design, the trade‐off between bend radius and loss, and fabrication rationale. The characterization methods to accurately measure such waveguides are discussed. Some typical examples of device and circuit applications are presented. An even wider range of applications becomes possible with the integration of active devices, such as lasers, amplifiers, modulators and photodetectors, on such an ultra‐low loss waveguide platform. A summary of efforts to integrate silicon nitride and silica‐based low‐loss waveguides with silicon and III/V based photonics, either hybridly or heterogeneously, will be presented. The approach to combine these integration technologies heterogeneously on a single silicon substrate is discussed and an application example of a high‐bandwidth receiver is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号