首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The simple combination of PdII with the tris‐monodentate ligand bis(pyridin‐3‐ylmethyl) pyridine‐3,5‐dicarboxylate, L , at ratios of 1:2 and 3:4 demonstrated the stoichiometrically controlled exclusive formation of the “spiro‐type” Pd1L2 macrocycle, 1 , and the quadruple‐stranded Pd3L4 cage, 2 , respectively. The architecture of 2 is elaborated with two compartments that can accommodate two units of fluoride, chloride, or bromide ions, one in each of the enclosures. However, the entry of iodide is altogether restricted. Complexes 1 and 2 are interconvertible under suitable conditions.  相似文献   

2.
Supramolecular polymer networks have attracted considerable attention not only due to their topological importance but also because they can show some fantastic properties such as stimuli‐responsiveness and self‐healing. Although various supramolecular networks are constructed by supramolecular chemists based on different non‐covalent interactions, supramolecular polymer networks based on multiple orthogonal interactions are still rare. Here, a supramolecular polymer network is presented on the basis of the host–guest interactions between dibenzo‐24‐crown‐8 (DB24C8) and dibenzylammonium salts (DBAS), the metal–ligand coordination interactions between terpyridine and Zn(OTf)2, and between 1,2,3‐triazole and PdCl2(PhCN)2. The topology of the networks can be easily tuned from monomer to main‐chain supramolecular polymer and then to the supramolecular networks. This process is well studied by various characterization methods such as 1H NMR, UV–vis, DOSY, viscosity, and rheological measurements. More importantly, a supramolecular gel is obtained at high concentrations of the supramolecular networks, which demonstrates both stimuli‐responsiveness and self‐healing properties.

  相似文献   


3.
The identification and control of a critical stage of polyaniline “nanotube” self‐assembly is presented, namely the granular agglomeration or growth onto nanorod templates. When the synthesis pH is held above 2.5, smooth insulating nanorods exhibiting hydrogen bonding and containing phenazine structures are produced, while below pH 2.5, small 15–30 nm granular polyaniline nanoparticles appear to agglomerate onto the available nanorod surface, apparently improving conductivity of the resulting structures by three orders of magnitude. This finding affects both fundamental theories of polyaniline nanostructure self‐assembly and their practical applications.

  相似文献   


4.
Insights are provided into the properties of molecular gels formed by diimidazolium salts both in “normal” solvents and ionic liquids. These materials can be interesting for applications in green and sustainable chemistry in which ionic liquids play a significant role, like catalysis and energy. In particular, two positional isomers of a diimidazolium cation have been examined with a wide range of anions for their ability to form gel phases. In particular, di‐, tri‐, and tetravalent anions bearing aliphatic or aromatic spacers were paired with the divalent cations. The properties of the organo‐ and ionogels formed have been analyzed by means of several different techniques, including calorimetry, rheology, resonance light scattering, UV/Vis absorption, polarizing optical microscopy, and powder X‐ray diffraction measurements. The investigations performed enabled us to obtain a wide range of conductive materials characterized by a high thermal stability and a low corrosiveness of the gelator (organogels) or of both gelator and solvent (ionogels). The information gained should be useful in the broader quest to identify and promote their applications.  相似文献   

5.
Two new peptide‐based isomers containing cholesterol and naphthalic groups have been designed and synthesized. We found that the position of L ‐alanine in the linker could tune the gelation properties and morphologies. The molecule with the L ‐alanine residue positioned in the middle of the linker ( 1 b ) shows better gelation behavior than that with L ‐alanine directly linked to the naphthalimido moiety ( 1 a ). As a result, a highly thermostable organogel of 1 b with a unique core–shell structure was obtained at high temperature and pressure in acetonitrile. Moreover, the gels of 1 a and 1 b could undergo an instantaneous gel‐to‐gel transition triggered by sonication. Ultrasound could break the core–shell microsphere of 1 b and the micelle structure of 1 a into entangled fibers. By studying the mechanism of the sonication‐triggered gel‐to‐gel transition process of these compounds, it can be concluded that ultrasound has a variety of effects on the morphology, such as cutting, knitting, unfolding, homogenizing, and even cross‐linking. Typically, ultrasound can cleave and homogenize π‐stacking and hydrophobic interactions among the gel molecules and then reshape the morphologies to form a new gel. This mechanism of morphology transformation triggered by sonication might be attractive in the field of material storage and controlled release.  相似文献   

6.
7.
We report the first X‐ray crystallographic structure of the “head‐to‐middle” prenyltransferase, isosesquilavandulyl diphosphate synthase, involved in biosynthesis of the merochlorin class of antibiotics. The protein adopts the ζ or cis‐prenyl transferase fold but remarkably, unlike tuberculosinol adenosine synthase and other cis‐prenyl transferases (e.g. cis‐farnesyl, decaprenyl, undecaprenyl diphosphate synthases), the large, hydrophobic side chain does not occupy a central hydrophobic tunnel. Instead, it occupies a surface pocket oriented at 90° to the hydrophobic tunnel. Product chain‐length control is achieved by squeezing out the ligand from the conventional allylic S1 binding site, with proton abstraction being achieved using a diphosphate‐Asn‐Ser relay. The structures revise and unify our thinking as to the mechanism of action of many other prenyl transferases and may also be of use in engineering new merochlorin‐class antibiotics.  相似文献   

8.
New methodology for making novel materials is highly desirable. Here, an “ingredients” approach to functional self‐assembled hydrogels was developed. By designing a building block to contain the right ingredients, a multi‐responsive, self‐assembled hydrogel was obtained through a process of template‐induced self‐synthesis in a dynamic combinatorial library. The system can be switched between gel and solution by light, redox reactions, pH, temperature, mechanical energy and sequestration or addition of MgII salt.  相似文献   

9.
A series of self‐assembled “double saddle”‐type trinuclear complexes of [Pd3L′3 L 2] formulation have been synthesized by complexation of a series of cis‐protected palladium(II) components with a slightly divergent “E‐shaped” non‐chelating tridentate ligand, 1,1′‐(pyridine‐3,5‐diyl)bis(3‐(pyridin‐3‐yl)urea ( L ). The cis‐protecting agents L′ employed in the study are ethylenediamine (en), tetramethylethylenediamine (tmeda), 2,2′‐bipyridine (bpy), and 1,10‐phenanthroline (phen), for 1 , 2 , 3 , and 4 , respectively. The crystal structures of [Pd3(tmeda)3( L )2](NO3)6 ( 2 ), [Pd3(bpy)3( L )2](NO3)6 ( 3 ), and [Pd3(phen)3( L )2](NO3)6 ( 4 ) unequivocally support the new architecture. Two of the “double saddle”‐type complexes ( 3 and 4 ) are suitably crafted with π surfaces at the strategically located cis‐protecting sites to facilitate intermolecular π–π interactions in the solid state. As a consequence, six units of the 3 (or 4 ) are assembled, by means of six‐pairs of π–π stacking interactions, in a circular geometry to form an octadecanuclear molecular ring of [(Pd3L′3 L 2)6] composition. The overall arrangement of the rings in the crystal packing is equated with the traditional Indian art form rangoli.  相似文献   

10.
The synthesis and self‐assembly of peptide–polymer conjugates into fibrillar nanostructures are reported, based on the amyloidogenic peptide KLVFF. A strategy for rational synthesis of polymer–peptide conjugates is documented via tethering of the amyloidogenic peptide segment LVFF (Aβ17‐20) and its modified derivative FFFF to the hydrophilic poly(ethylene glycol) monomethyl ether (mPEG) polymer via thio‐bromo based “click” chemistry. The resultant conjugates mPEG‐LVFF‐OMe and mPEG‐FFFF‐OMe are purified via preparative gel permeation chromatography technique (with a yield of 61% and 64%, respectively), and are successfully characterized via combination of spectroscopic and chromatographic methods, including electrospray ionization time‐of‐flight mass spectrometry. The peptide‐guided self‐assembling behavior of the as‐constructed amphiphilic supramolecular materials is further investigated via transmission electron microscopic and circular dichroism spectroscopic analysis, exhibiting fibrillar nanostructure formation in binary aqueous solution mixture.  相似文献   

11.
Linear π‐conjugated oligomers are known to form organogels through noncovalent interactions. Herein, we report the effect of π‐repeat units on the gelation and morphological properties of three different oligo(p‐phenylene‐ethynylene)s: OPE3 , OPE5 , and OPE7 . All of these molecules form fluorescent gels in nonpolar solvents at low critical gel concentrations, thereby resulting in a blue gel for OPE3 , a green gel for OPE5 , and a greenish yellow gel for OPE7 . The molecule–molecule and molecule–substrate interactions in these OPEs are strongly influenced by the conjugation length of the molecules. Silicon wafer suppresses substrate–molecule interactions whereas a mica surface facilitates such interactions. At lower concentrations, OPE3 formed vesicular assemblies and OPE5 gave entangled fibers, whereas OPE7 resulted in spiral assemblies on a mica surface. At higher concentrations, OPE3 and OPE5 resulted in super‐bundles of fibers and flowerlike short‐fiber agglomerates when different conditions were applied. The number of polymorphic structures increases on increasing the conjugation length, as seen in the case of OPE7 with n=5, which resulted in a variety of exotic structures, the formation of which could be controlled by varying the substrate, concentration, and humidity.  相似文献   

12.
13.
The first and second generations of dendronized polyprolines P3G1 , P3G2, and P4G1 are prepared via the “grafting to” route, and their thermoresponsive properties and helical conformations investigated. High molar masses of polyproline main chains carrying azido groups are achieved first by polycondensation of peptide precursors through activated ester strategy. Oligoethylene glycol dendrons cored with alkyne are then attached onto the main chains through click reaction. These polymers are found to be thermoresponsive. Circular dichroism spectroscopy investigation indicates, in contrast to P3G2 and P4G1 which adopt the expected PPII conformation in aqueous conditions, P3G1 prefers to adopt PPI helical conformation, and this conformation is stable within the measured time period and temperature range.

  相似文献   


14.
A series of novel polymerized ionic liquids (PILs) contained imidazolium, poly (2,5‐bis{[6‐(1‐butyl‐3′‐imidazolium)hexyl] oxy carbonyl}styrene salts) (denoted as P1? X?, X??Br?, BF4?, PF6? and TFSI?) were successfully synthesized via radical polymerization. The chemical structures of the monomers and their corresponding PILs were confirmed by 1H NMR, 13C NMR, and Fourier transform infrared spectroscopy. Thermogravimetric analysis results showed that these PILs had excellent thermal stability. The phase transitions and liquid‐crystalline (LC) behaviors of these polymers were investigated by differential scanning calorimetry, polarized light microscopy (PLM), and wide‐angle X‐ray diffraction. The combined experimental results showed that all the PILs could form hexagonal columnar (?H) LC ordered structures because of the strong interaction between the anions and cations in the side groups except for P1? TFSI?. The conductivities of monomers and PILs were sketchily investigated, and monomers had higher conductivities than those of conprespoding PILs. For comparison, we have synthesized a polymer without counter‐anion, but similar to the chemical structure of P1? X?, poly (2, 5‐bis{[6‐(4‐butoxy‐4′‐oxy phenyl) hexyl] oxycarbonyl} styrene) (denoted as P2). In this case, phenyl took place of imidazolium of side chain, and LC ordered structure did not form. The comparison between P1? X? and P2 suggested that ion played an important role in the constructing of LC ordered structure. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
16.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

17.
The spontaneous micelle‐to‐vesicle transition in an aqueous mixture of two surface‐active ionic liquids (SAILs), namely, 1‐butyl‐3‐methylimidazolium n‐octylsulfate ([C4mim][C8SO4]) and 1‐dodecyl‐3‐methylimidazoium chloride ([C12mim]Cl) is described. In addition to detailed structural characterization obtained by using dynamic light scattering, transmission electron microscopy (TEM), and cryogenic TEM techniques, ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) as a donor (D) to rhodamine 6G (R6G) as an acceptor (A) is also used to study micelle–vesicle transitions in the present system. Structural transitions of SAIL micelles ([C4mim][C8SO4] or [C12mim]Cl micelles) to mixed SAIL vesicles resulted in significantly increased D –A distances, and therefore, increased timescale of FRET. In [C4mim][C8SO4] micelles, FRET between C153 and R6G occurs on an ultrafast timescale of 3.3 ps, which corresponds to a D –A distance of about 15 Å. As [C4mim][C8SO4] micelles are transformed into mixed micelles upon the addition of a 0.25 molar fraction of [C12mim]Cl, the timescale of FRET increases to 300 ps, which suggests an increase in the D –A distance to 31 Å. At a 0.5 molar fraction of [C12mim]Cl, unilamellar vesicles are formed in which FRET occurs on multiple timescales of about 250 and 2100 ps, which correspond to D –A distances of 33 and 47 Å. Although in micelles and mixed micelles the obtained D –A distances are well correlated with their radius, in vesicles the obtained D –A distance is within the range of the bilayer thickness.  相似文献   

18.
19.
Amphiphilic block copolymers can be conveniently prepared via convergent syntheses, allowing each individual polymer block to be prepared via the polymerization technique that gives the best architectural control. The convergent “click‐chemistry” route presented here, gives access to amphiphilic diblock copolymers prepared from a ring opening metathesis polymer and polyethylene glycol. Because of the high functional group tolerance of ruthenium carbene initiators, highly functional ring opening metathesis polymerization (ROMP) polymer blocks can be prepared. The described synthetic route allows the conjugation of these polymer blocks with other end‐functional polymers to give well‐defined and highly functional amphiphilic diblock copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2913–2921, 2008  相似文献   

20.
Down to the wire : A simple and effective method to synthesize silver nanowires through an ionic‐liquid‐assisted polyol process is developed (see scheme; scale bar=5 nm). The ionic liquids are tuned to provide the anisotropic growth of silver nanoparticles into nanowires.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号