首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Raman spectroscopy based on the 1064‐nm laser excitation was suggested as a handy non‐invasive technique allowing to quickly determine sugar content in honey and similar food products. In the present study, the green 532‐nm laser radiation is explored instead as it provides higher‐quality spectra in a shorter time. The sample fluorescence was quenched by purification with activated carbon. For control mixture decomposition of Raman spectra to standard subspectra led to a typical error of the sugar content of 3%. Raman optical activity (ROA) spectra that could be measured at the shorter excitation wavelength as well provided a lower accuracy (~8%) than the Raman spectra because of instrumental sensitivity and noise limitations. The results show that Raman spectroscopy provides elegant and reliable means for fast analyses of sugar‐based food products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a novel approach to analyze in situ (−)‐bornyl acetate (BA) in pichtae essential oil (Siberian fir needle oil, Abies sibirica oil) by means of Raman optical activity (ROA) is reported. As part of this approach, a conformational study in the gas phase of (+)‐ and (−)‐BA has been carried out, predicting the presence of three conformers for each enantiomer at 298.15 K. The structures of these conformers were optimized with density functional theory with the Becke 3LYP functional and 6–311 + + g** basis set. Subsequently, the Raman and ROA spectra were simulated in order to compare them with the experimentally measured spectra of the neat enantiomers of BA. Finally, the combination of Raman and ROA spectroscopy as well as DFT calculations was successfully applied not only for the detection of BA but also for the determination of the specific enantiomer of BA present in the investigated pichtae essential oil samples. Thus, the ROA technique described here has the potential to be used as a fast and easy commercial method to control the quality of essential oils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A new circularly polarized (CP) Raman spectrometer is described that demonstrates simultaneous acquisition of all four forms of circular polarization Raman optical activity (ROA). The instrument is a design extension of a commercially available back scattering circular polarization (SCP) ROA spectrometer. Circular polarization of the incident beam is introduced with a quarter‐wave plate, and a half‐wave plate alternately positioned in and out of the beam controls the modulation between right circular polarization (RCP) or left circular polarization (LCP) states. Combining this modulation with the simultaneous detection of RCP and LCP scattered Raman radiation allows the measurement of incident circular polarization (ICP), SCP, in‐phase dual circular polarization(DCPI) and out‐of‐phase DCPII‐ROA. In addition, three different forms of backscattered Raman spectra, namely unpolarized, highly polarized, and depolarized Raman spectra, as well as a degree of circularity spectrum are obtained. The performance of the new all‐CP ROA spectrometer is evaluated with neat α‐pinene and aqueous hen lysozyme solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A simple incident circular polarization Raman optical activity (ICP ROA) spectrometer was constructed by applying the method of circularity conversion. The circular polarization of the incident laser light was modulated between right and left by the insertion of a half‐wave plate and not by using a Pockels cell which is usually used in ICP ROA instruments. On the basis of the concept of the virtual enantiomer (Hug, W. Applied Spectroscopy, 2003, 57, 1), circularity converters were inserted in the optical train, which could effectively compensate the systematic offset. The new instrument successfully attained photon shot‐noise‐limited conditions for all bands except for the very strongly polarized Raman band. The ROA spectra of some standard chiral samples were measured to demonstrate the performance of the spectrometer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Raman optical activity (ROA) is a relatively new technique used to determine the structure of chiral molecules and is proving useful in the study of biological molecules such as proteins and DNA/RNA. Here, for the first time, we demonstrate the applicability of ROA as a technique to study achiral groups in chiral environments, detecting the induced chirality of N‐(fluorenyl‐9‐methoxycarbonyl) (Fmoc) in a chiral self‐assembled structure of Fmoc‐dipeptides. This technique is therefore of interest to those studying self‐assembled systems that adopt a chiral structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Spatially offset Raman spectroscopy (SORS) is currently being developed as an in vivo tool for bone disease detection, but to date, information about the interrogated volume as influenced by the light propagation and scattering characteristics of the bone matrix is still limited. This paper seeks to develop our general understanding of the sampling depths of SORS in bone specimens as a function of the applied spatial offset. Equine metacarpal bone was selected as a suitable specimen of compact cortical bone large enough to allow several thin slices (600 µm) to be cut from the dorsal surface. Photon migration at 830‐nm excitation was studied with five bone slices and a 380‐µm‐thin polytetrafluoroethylene (PTFE) slice placed consecutively between the layers. To optimize Raman signal recovery of the PTFE with increasing depth within the bone stack required a corresponding increase in spatial offset. For example, to sample effectively at 2.2‐mm depth within the bone required an optimal SORS offset of 7 mm. However, with a 7‐mm offset, the maximum accessible penetration depth from which the PTFE signal could be still recovered was 3.7 mm. These results provide essential basic information for developing SORS technology for medical diagnostics in general and optimizing sampling through bone tissue, permitting a better understanding of the relationship between the offset and depth of bone assessed, in particular. Potential applications include the detection of chemically specific markers for changes in bone matrix chemistry localized within the tissue and not present in healthy bone. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.  相似文献   

7.
Vibrational Raman optical activity (ROA) spectra have been measured for aqueous solutions of 4(R)‐hydroxyproline at three different pH values and are compared with theoretical results calculated for several conformations of anionic, cationic and zwitterionic 4(R)‐hydroxyproline using density functional theory (DFT) and the polarizable continuum model (PCM). The experimental ROA bands have been ascribed to the normal modes by comparison of the experimental and calculated vibrational frequencies and ROA intensities. Overall, using PCM for geometry optimization and force field calculations gives simulated Raman and ROA spectra that agree with the main features of the experimental spectra, whereas using PCM also in the calculations of optical tensors seems more problematic. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Raman spectroscopy is a vibrational spectroscopic technique that can be used to monitor the therapeutic efficacy of anticancer drugs during carcinogenesis in a non‐invasive and label‐free manner. The present study aims to investigate the biochemical changes exerted upon free silibinin (SIL) and its nanoparticulate (SILNPs) treatment against 7,12‐dimethylbenz[a]anthracene (DMBA)‐induced oral carcinogenesis in the fingerprint region of 1800–500 cm−1 using HE‐785 Raman spectrometer. Raman spectra differed significantly between the control and tumor tissues, with tumor tissues characterized by increased intensities of vibrational bands such as nucleic acids, phenylalanine and tryptophan and a lower percentage of lipids when compared to the control tissues. Further, oral administration of free SIL and SILNPs significantly increased lipids and decreased the levels of tryptophan, phenylalanine and nucleic acid contents. Overall, the treatment of nanoparticulate SIL was found to be a more potent antitumor effect than free SIL in preventing the formation of tumor and also brought back the several Raman bands to a normal range in the buccal mucosa of hamsters during DMBA‐induced oral carcinogenesis. In addition, the detailed secondary structure of proteins in the control and experimental groups is also presented. Furthermore, the diagnostic algorithms based on principal component linear discriminant analysis (PC‐LDA) achieved an overall sensitivity of 94–100% and specificity of 76–100%. These results further demonstrate that Raman spectroscopy associated with PC‐LDA diagnostic algorithms could be a valuable tool for rapid and sensitive detection of specific biomolecular changes at the molecular level in response to anticancer drug. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Natural resonance electronic Raman optical activity (ROA) is observed for the first time. Coincidently, the first example of vibrational ROA enhanced by low‐lying electronic transition is reported. These new phenomena were measured using the rare‐earth complex Eu(tfc)3 (+)‐tris[3‐trifluoroacetyl‐D ‐camphorato]europium(III), where electronic resonance occurs between the 532‐nm laser excitation and the 7F15D1 transition of the Eu3+ metal center. Electronic Raman spectra involve the Raman transitions terminating on the low‐lying electronic states of Eu(tfc)3. The observed vibrational ROA spectra are enhanced relative to typical ROA spectra by the proximity of vibrational states of Eu(tfc)3 to its low‐lying electronic states with significant magnetic‐dipole character, whereas the parent vibrational Raman spectra do not appear to be resonance‐enhanced since the 532‐nm vibrational Raman spectrum has similar relative intensities to the corresponding Raman spectrum measured with 1064‐nm laser excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Raman optical activity (ROA) has been exclusively observed in the visible (VIS) and near‐infrared (NIR) spectral regions to date. During the last few years, we have designed, constructed and tested the first ROA instrument, operating in the deep‐ultraviolet (DUV) spectral region employing 244‐nm excitation. This novel DUV ROA instrument is based on a backscattering geometry and incident circular polarization modulation (ICP); it makes use of a fast DUV imaging lens‐based spectrograph and specially designed DUV grade polarization optics. The performance of this instrument has been evaluated by analysing measured non‐resonant DUV ROA spectra of non‐absorbing enantiomeric liquid samples and by comparing these with corresponding ROA spectra recorded in the visible spectral region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Breast cancer is the most common cancer amongst women worldwide. Early detection of this cancer results in better prognosis. Owing to the disadvantages of currently available screening tools for early detection of this cancer, rapid and sensitive alternatives such as optical spectroscopic techniques are being extensively explored. Detection of premalignant lesions using these techniques has been reported. However, premalignant lesions are risk indicators and may not be true predictors of tumor development. Therefore, the current study aims at correlation between spectral changes and tumor appearance. In this context, transcutaneous in vivo spectra were acquired from same carcinogen‐induced rats immediately before carcinogen treatment, 3, 8–10, and 12–14 weeks after carcinogen treatment and from frank tumors. These were analyzed using multivariate statistical tools principal component analysis and principal component linear discriminant analysis. Further, a complex test data set consisting of spectra from rats of varying ages, tumor appearance times, and tumor induction protocols was used to test the feasibility of correctly identifying controls and pretumors using Raman spectroscopy. Results suggest feasibility of distinguishing pretumor spectra from controls. Taking into consideration the heterogeneity of afflicted breast, rat‐wise analysis was performed wherein a rat was declared ‘will develop tumor’, even if one spectrum was found abnormal. Using this criterion, in vivo Raman spectroscopy could predict tumor appearance with 82% sensitivity and 95% specificity. Prospectively, combined with emerging technologies like deep Raman spectroscopy and fiber‐probe‐based whole sample imaging, Raman spectroscopy may prove as an invaluable adjunct to currently available breast cancer screening tools. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The theory and applications of Raman optical activity (ROA), which measures vibrational optical activity by means of a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarized incident light or, equivalently, a small circularly polarized component in the scattered light, are briefly reviewed. Thanks to new developments in instrumentation, ROA may be applied to a wide range of chiral molecular species. As well as providing the absolute configuration of small chiral molecules, the application of ab initio methods to the analysis of experimental ROA spectra holds great promise for the determination of the three-dimensional structure and conformational distribution in unprecedented detail. The many structure-sensitive bands in the ROA spectra of aqueous solutions of biomolecules provide detailed structural information including, in the case of proteins, the tertiary fold in addition to secondary structure elements such as helix and sheet. ROA studies of unfolded and partially folded proteins are providing new insight into the residual structure in denatured proteins and the aberrant behaviour of proteins responsible for misfolding diseases. It is even possible to measure the ROA spectra of most intact viruses, from which information about the folds of the major coat proteins and the structure of the nucleic acid core may be obtained. Hopefully this review will stimulate interest in the molecular physics aspects of the subject, and will encourage further theoretical work aimed at extracting maximum information from the plethora of structure-sensitive bands in typical ROA spectra.  相似文献   

13.
When solving chemical classification problems, multivariate analysis has proven to be an important mathematical tool. Unpolarized spectroscopic data, IR, NIR, and UV‐Visible absorption data and unpolarized vibrational Raman data, are typically analyzed by two‐way chemometric methods, e.g. principal component analysis (PCA). When the unpolarized spectra of the different molecules are almost identical, the PCA results in low recognition ratios or even fails. In contrast to absorption processes, Raman scattering can provide polarized data. It is shown, by using mathematical simulations, that the outcome of the PCA can be improved considerably by using the polarized, vibrational Raman data instead of the unpolarized data. The improvement stems from the increased amount of molecular information, which is now available for the PCA of the vibrational data, because the polarization properties of the scattering, expressed through the depolarization ratio (DPR), is very sensitive to small changes in distinct molecular properties and insensitive to sample and experimental variations. For molecules possessing some symmetry, a change of the DPR may be induced by a decrease in symmetry and for highly symmetric molecules non‐dispersive Raman modes typically become dispersive. For dispersive modes, a wavenumber‐dependant change of the DPR may also result from a small energy shift of an allowed electronic transition. We show that the increased information content inherently present in the polarized data, opens up new possibilities for combining the solution of classification problems with an unveiling of details of the different properties and processes in bio‐physic due to various perturbations and changes of the structure of the bio‐molecules. It is also demonstrated that the increased access to molecular information enables in vitro detection of molecular changes often encountered when analyzing biological functions, which are reflected in changes in the excited electronic states. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Silicon nanotip arrays exhibit a wide variety of interesting optical and electronic properties associated with their dimensionality. We here investigate the effect of size‐induced changes on phonon localization and explain the enhanced Raman response. The occurrence of normally forbidden transitions in the photoluminescence spectra provides evidence for the predicted localization effect. Spatially resolved Raman spectroscopy reveals a continuous change of the silicon Raman peak position and peak width along the nanotip that is attributed to a smooth change between bulk properties at the base to size‐induced phonon confinement in the apex of the nanotip. This approach allows to exclude heating effects that normally overwhelm the phonon confinement signature. The Raman spectra are in excellent agreement with the spatial correlation model and the extracted correlation length is comparable to the tip dimensions. The observed phonon confinement coincides with an enhancement of the Raman scattering efficiency at the tip apex and results in a 40‐fold increase of the sample's Raman intensity compared with bulk silicon. These results provide a step toward the integration of Si based optoelectronic devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, two immunoassay methods based on SERS are developed for multiplex analysis, both of which stemmed from the concept of forming a sandwich structure ‘capture antibody substrate/antigen/Raman‐reporter‐labeled immuno‐nanoparticles’. They are two‐molecule labeled one‐nanoparticle and one‐molecule labeled two‐nanoparticle methods. In both the methods, two different antibodies covalently bound to a solid substrate can specifically capture two different antigens from a sample. The captured antigens in turn bind selectively to their corresponding antibodies immobilized on Raman‐reporter‐labeled nanoparticles. Multianalyte immunoassay is successfully demonstrated by the detection of characteristic Raman bands of the probe molecules only when the antigen and antibody are matched. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of the present study was to provide experimental procedures for the identification of anthocyanin‐based dyes used in antiquity. In particular, we assessed the possibility to identify anthocyanins, both in plant extracts and in dyed textiles, by means of surface‐enhanced Raman spectroscopy (SERS), a very chemically specific technique that is moreover sensitive to the changes in structures of molecules, phenomena that occur extensively in the chemistry of anthocyanins. The choice of the plant sources (bilberry, elderberry, sumac, purple corn and hollyhock) was based on their attested use in history as dyeing matters. Suitable extraction and pre‐treatment procedures were optimized both for plant sources (berries, cob glumes and flowers) and textiles dyed with such sources in the laboratory, followed by SERS analyses at different pH values. Finally, special attention was paid to the well‐known instability of anthocyanins: dyed wool samples were exposed to artificial aging in order to verify the possibility to identify such molecules also in faded textiles. The achievement of reliable surface‐enhanced Raman spectra from these samples encourages us to suggest the protocol for the analysis of historical objects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Raman and vibrational Raman optical activity (ROA) spectra have been calculated for three molecules: H2O2, CHDTF and CHDTOH. The effects of electron correlation on the ROA parameters of these relatively small systems have been investigated by means of the multiconfigurational self-consistent field (SCF) approach. A range of correlation-consistent basis sets has been used in the calculations. The basis set convergence of the calculated ROA parameters is fairly well achieved when sets of at least d-aug-cc-pVTZ quality are used. On the other hand, the aug-cc-pVDZ set seems to be sufficient for a qualitative analysis. Diffuse functions, possibly a double set, are essential to ensure a good quality of the calculated ROA spectrum. In most cases the sign and approximate magnitude of the ROA are correctly predicted at the SCF level, and the corresponding ROA spectra should be considered qualitatively accurate.  相似文献   

18.
This article aims to investigate the Raman modes present in Mn‐doped ZnO thin films that are deposited using the magnetron co‐sputtering method. A broad band ranging from 500 to 590 cm−1 is present in the Raman spectra of heavily Mn‐doped ZnO films. The multi‐peak‐fitting results show that this broad band may be composed of six peaks, and the peak at 528 cm−1 could be a characteristic mode of Mn2O3. The results of this study suggest that the origin of the Raman peaks in Mn‐doped ZnO films may be due to three major types: structural disorder and morphological changes caused by the Mn dopant, Mn‐related oxides and intrinsic host‐lattice defects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
We developed a micro‐Raman and photoluminescence imaging technique for visualizing the internal stress fields in a sapphire crystal. The technique was applied to an Australian sapphire gemstone with a zircon inclusion. Considering piezospectroscopic effects on Raman and photoluminescence spectra, the Raman shifts of sapphire around the zircon inclusion were converted to hydrostatic pressure and deviatoric components of stress tensor. The internal stress was highly concentrated at the tips of the zircon crystal, where the deviatoric stress and the hydrostatic pressure component reached 700 and 470 MPa, respectively. Generation of compressive stress on the crystal surface of zircon can be explained by the difference in thermal expansion coefficients and elastic constants between sapphire and zircon. In general, internal stress fields induced by mineral inclusions reflect the pressure and temperature conditions at which the host sapphire gemstones were crystallized. Thus, the present technique can be utilized to identify the origin of gemstones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Vibrational properties and structural changes under pressure of a highly luminescent molecular organic crystal have been investigated by ultraviolet resonant Raman spectroscopy with a 244‐nm excitation. Resonant Raman modes of α‐perylene crystal up to 1GPa were followed under hydrostatic pressure in an anvil cell with a sapphire window transparent to ultraviolet light. Nonlinear evolution of intra‐molecular modes is induced by pressure. Abrupt shifts of Raman wavenumbers suggest structural and planar modifications of the molecules in the crystal. We interpret these shifts as a first‐order phase transition to a lower volume of unit cell. The luminescence of perylene crystal is gradually modified as a consequence of these structural changes. The present experimental setup allows investigating with Raman spectroscopy very luminescent molecules involved in chemical reactions and molecular organic crystals under relatively high pressure (up to 1GPa). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号