首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Based on their rigid‐rod structure all‐conjugated, rod‐rod block copolymers show a preferred tendency to self‐assemble into low‐curvature vesicular or lamellar nanostructures independent from their specific chemical structure and composition. This unique and attractive behaviour is clearly illustrated in a few examples of such all‐conjugated block copolymers. The resulting nanostructured heteromaterials may find applications in electronic devices or artificial membranes.

  相似文献   


3.
Since nanostructured amphiphilic macromolecules capable of affording high ion and water transport are becoming increasingly important in a wide range of contemporary energy and environmental technologies, the swelling kinetics and temperature dependence of water uptake are investigated in a series of midblock‐sulfonated thermoplastic elastomers. Upon self‐assembly, these materials maintain a stable hydrogel network in the presence of a polar liquid. In this study, real‐time water‐sorption kinetics in copolymer films prepared by different casting solvents are elucidated by synchrotron small‐angle X‐ray scattering and gravimetric measurements, which directly correlate nanostructural changes with macroscopic swelling to establish fundamental structure–property behavior. By monitoring the equilibrium swelling capacity of these materials over a range of temperatures, an unexpected transition in the vicinity of 50 °C has been discovered. Depending on copolymer morphology and degree of sulfonation, hydrothermal conditioning of specimens to temperatures above this transition permits retention of superabsorbent swelling at ambient temperature.

  相似文献   


4.
5.
Midblock‐sulfonated triblock copolymers afford a desirable opportunity to generate network‐forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel‐cell, water‐desalination, ion‐exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly(ptert‐butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly(ptert‐butylstyrene‐b‐styrene‐bptert‐butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development of charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross‐linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent‐vapor annealing to promote nanostructural refinement. The effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 490–497  相似文献   

6.
7.
Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non‐sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation‐sulfination reactions whereby the sulfonic acid groups were exclusively placed in ortho positions to the many sulfone bridges, giving these blocks IECs of 4.1 and 4.6 meq·g−1, respectively. Copolymer membranes with IECs of 1.4 meq·g−1 displayed well‐connected hydrophilic nanophase domains and had decomposition temperatures at, or above, 300 °C under air. The copolymer with the tetrasulfonated tetraaryldisulfone segments showed a proton conductivity of 0.13 S·cm−1 at 80 °C under fully humidified conditions, and surpassed that of a perfluorosulfonic acid membrane (NRE212) by a factor of 5 at –20 °C over time.

  相似文献   


8.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

9.
The preparation and aqueous self‐assembly of newly Y‐shaped amphiphilic block polyurethane (PUG) copolymers are reported here. These amphiphilic copolymers, designed to have two hydrophilic poly(ethylene oxide) (PEO) tails and one hydrophobic alkyl tail via a two‐step coupling reaction, can self‐assemble into giant unilamellar vesicles (GUVs) (diameter ≥ 1000 nm) with a direct dissolution method in aqueous solution, depending on their Y‐shaped structures and initial concentrations. More interesting, the copolymers can self‐assemble into various distinct nano‐/microstructures, such as spherical micelles, small vesicles, and GUVs, with the increase of their concentrations. The traditional preparation methods of GUVs generally need conventional amphiphilic molecules and additional complicated conditions, such as alternating electrical field, buffer solution, or organic solvent. Therefore, the self‐assembly of Y‐shaped PUGs with a direct dissolution method in aqueous solution demonstrated in this study supplies a new clue to fabricate GUVs based on the geometric design of amphiphilic polymers.

  相似文献   


10.
Block copolymers can form a broad range of self‐assembled aggregates. In solution, planar assemblies usually form closed structures such as vesicles; thus, free‐standing sheet formation can be challenging. While most polymer single crystals are planar, their growth usually occurs by uptake of individual chains. Here we report a novel lamella formation mechanism: core‐crystalline spherical micelles link up to form rods in solution, which then associate to yield planar arrays. For the system of poly(ethylene oxide)‐block‐polycaprolactone in water, co‐assembly with homopolycaprolactone can induce a series of morphological changes that yield either rods or lamellae. The underlying lamella formation mechanism was elucidated by electron microscopy, while light scattering was used to probe the kinetics. The hierarchical growth of lamellae from one‐dimensional rod subunits, which had been formed from spherical assemblies, is novel and controllable in terms of product size and aspect ratio.  相似文献   

11.
采用激基缔合物荧光光谱法研究了轻度磺化聚甲基丙烯酸丁酯-b-聚苯乙烯(PBMA-b-PSt)嵌段离聚体在极性溶剂N,N-二甲基甲酰胺(DMF)溶液中的聚集行为;发现嵌段离聚体的磺化度和浓度强烈影响溶液中聚合物链的聚集态结构,不同的磺化度样品具有不同的临界聚集浓度;随磺化度增加,聚合物链缠绕密集,形成具有多苯环的聚集体,而且当磺化度为摩尔分数x=3.59%时,荧光发射光谱最大发射峰波长出现最大红移,临界聚集浓度最低,说明最容易形成多苯环聚集体,该磺化点可以认为是磺化聚甲基丙烯酸丁酯-b-聚苯乙烯体现离聚体行为和聚电解质行为的临界磺化度。  相似文献   

12.
Block copolymers create various types of nano‐structures, e. g., spheres, rods, cubes, and lamellae. This review discloses the dynamic macromolecular organization of block copolymers comprising poly(L ‐lactide) (PLLA) and poly(oxyethylene) (PEG) that allows to simulate elaborate biological systems. The block copolymers, AB‐ (PLLA‐PEG) and ABA‐type (PLLA‐PEG‐PLLA), are synthesized by ordinary lactide polymerization to have a controlled block length. They are dispersed into an aqueous medium to prepare nano‐scale particles, consisting of hydrophobic PLLA and hydrophilic PEG in the core and shell, respectively. Then, the particles are placed on a flat substrate by the casting method. The particles are detected as discoids by AFM, having shrunk with loss of water. Heat‐treatment of these particles at 60°C (above Tg of PLLA) gives rise to a collapse into small fragments, which then aggregate into bands with nano‐size width and thickness. The PLLA‐PEG bands align parallel to each other, while the PLLA‐PEG‐PLLA bands form a characteristic network resembling the neuron system created in animal tissue. As analyzed by TEM diffraction, each is composed of α‐crystal of PLLA whose c‐axis (molecular axis) is perpendicular to the substrate surface. Based on this fact, a doubly twisted chain structure of PLLA is proposed in addition to a plausible mechanism for the self‐organization of the block copolymers. Derivatives of the PLLA‐PEG block copolymers can form far more interesting nano‐architectures. An equimolar mixture of enantiomeric copolymers, PLLA‐PEG‐PLLA and PDLA‐PEG‐PDLA, forms a hydrogel that is thermo‐responsive. The terminal‐modified poly(L ‐lactide)‐block‐polyoxyethylene monocinnamate (PLLA‐PEG‐C) forms a highly stabilized nanofiber by the photo‐reaction of the cinnamates placed in the outer layer of the nanobands.  相似文献   

13.
14.
The combination of metals and polymers in hybrid materials is a research area of great current interest. A number of methods for controlling the positioning of metallic species within polymer matrices on the nanometer scale have been developed. This highlight focuses on the use of functional block copolymers for the localization of metal species, especially nanoparticles, on the nanometer scale through block copolymer phase segregation. Research from the author's group on the use of alkyne‐functional block copolymers for the preparation of cobalt‐containing materials is discussed in this context. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4323–4336, 2005  相似文献   

15.
16.
17.
18.
This review deals with nanoporous materials made from the self‐assembly of block copolymers with a special interest in the chemical functions covering the surface of their nanopores. A detailed overview of the existing methods and strategies to generate well‐defined organic functional groups covering the surface of the pore walls is provided. This further enables to finely tune the affinity of the pore walls and to perform well‐defined chemical reactions onto them, which is essential for further dedicated applications.

  相似文献   


19.
Summary: Thermosensitive polymer nanocontainers were formed by self‐assembly of diblock copolymers poly(2‐cinnamoylethyl methacrylate)‐block‐poly(N‐isopropylacrylamide) (PCEMA‐block‐PNIPAM) and subsequent photo‐crosslinking of the PCEMA shells. It was found that the diameter of the nanocontainers ranges from tens of nanometers to thousands of nanometers, depending on the self‐assembly conditions. The phase transition of the nanocontainers takes place at 32 °C; the structural changes are reversible in a heating and cooling cycle.

Schematic illustration of the structural transition behavior of the thermosensitive polymer nanocontainers.  相似文献   


20.
Ionic polymer–metal composites (IPMCs) represent an important class of stimuli‐responsive polymers that are capable of bending upon application of an electric potential. Conventional IPMCs, prepared with Nafion and related polyelectrolytes, often suffer from processing challenges, relatively low actuation levels and back relaxation during actuation. In this study, we examine and compare the effects of fabrication and solvent on the actuation behavior of a block ionomer with a sulfonated midblock and glassy endblocks that are capable of self‐organizing and thus stabilizing a molecular network in the presence of a polar solvent. Unlike Nafion, this material can be readily dissolved and cast from solution to yield films that vary in thickness and exhibit enormous solvent uptake. Cycling the initial chemical deposition of Pt on the surfaces of swollen films (the compositing process) increases the extent to which the electrodes penetrate the films, thereby improving contact along the polymer/electrode interface. The maximum bending actuation measured from IPMCs prepared with different solvents is at least comparable, but is often superior, to that reported for conventional IPMCs, without evidence of back relaxation. An unexpected characteristic observed here is that the actuation direction can be solvent regulated. Our results confirm that this block ionomer constitutes an attractive alternative for use in IPMCs and their associated applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号