首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of well‐defined rod‐coil PAA‐b‐DPS block copolymers, containing Fréchet‐type dendronized polystyrene (DPS) with different generation as a rod‐like hydrophobic block and poly(acrylic acid) (PAA) as a hydrophilic coil were synthesized. The procedure included the following steps: the precursor PMA‐b‐DPS copolymer was prepared through ATRP of Fréchet‐type dendritic styrene macromonomer bearing the first to the third generation (G1–G3), respectively, initiated by poly(methyl acrylate) (PMA‐Br). Then, by converting PMA into PAA by subsequent hydrolysis, the targeted amphiphilic copolymers were obtained. Moreover, by using the rod‐coil amphiphiles as building blocks, large compound micelles and vesicles were formed in a binary solvent mixture of DMF/H2O. Morphological changes in self‐assembly showed dependence on the length of the dendronized block.

  相似文献   


2.
In this paper, self‐assembled polymeric toroids formed by a temperature‐driven process are reported. Rhodamine B (RhB) end‐capped poly(N‐isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two‐phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature‐driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self‐assembly of polymers. Moreover, the photoluminescent behavior of the RhB end‐capped PNIPAAm species formed by the process is also studied and discussed.

  相似文献   


3.
A novel poly(aryleneethynylene), in which the main chain and the tetrathiafulvalene (TTF) side chains are coplanar, has been prepared and characterized. The polymer can self‐assemble in tetrahydrofuran (THF) and the π‐extended coplanar backbones adopt good face‐to‐face stacking, which is confirmed by X‐ray diffraction (XRD) analysis. Cyclic voltammetry has revealed that the polymer has reversible electroactive properties. The optical bandgap deduced by UV‐vis absorption spectroscopy and the electrochemical bandgap are 2.03 and 2.14 eV. The conductivities of the powder and the realigning solid of the polymer are 6 × 10−8 and 4 × 10−6 S cm−1.

  相似文献   


4.
Summary: Polyaniline (PANI) is successfully self‐assembled with poly(N‐vinylpyrrolidone) (PVP) into aqueous nanocolloids. The typical morphology of the colloids is studied by atomic force microscopy (AFM), which reveals spherical nanoparticles with a diameter of 80–150 nm. A possible mechanism for such a post‐synthetic self‐assembly process is proposed.

AFM micrograph of PANI aqueous nanocolloids stabilized by PVP via a novel post‐synthetic self‐assembly method.  相似文献   


5.
Novel amphiphilic polypeptoid‐polyester diblock copolymers based on poly(sarcosine) (PSar) and poly(ε‐caprolactone) (PCL) are synthesized by a one‐pot glovebox‐free approach. In this method, sarcosine N‐carboxy anhydride (Sar‐NCA) is firstly polymerized in the presence of benzylamine under N2 flow, then the resulting poly(sarcosine) is used in situ as the macro­initiator for the ring‐opening polymerization (ROP) of ε‐caprolactone using tin(II) octanoate as a catalyst. The degree of poly­merization of each block is controlled by various feed ratios of monomer/initiator. The diblock copolymers with controlled molecular weight and narrow molecular weight distributions (ĐM < 1.2) are characterized by 1H NMR, 13C NMR, and size‐exclusion chromatography. The self‐assembly behavior of PSar‐b‐PCL in water is investigated by dynamic light scattering (DLS) and transmission electron microscopy. DLS results reveal that the diblock copolymers associate into nanoparticles with average hydrodynamic diameters (DH) around 100 nm in water, which may be used as drug delivery carriers.

  相似文献   


6.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

7.
Poly(oligoethylene glycol)‐poly(2‐vinylpyridine) is a model diblock for studying the effect of block‐localized charge on block copolymer self‐assembly because in the absence of charge the polymers are perfectly miscible, and upon protonation of the vinylpyridine block the polymer undergoes an order–disorder transition. Seven model block copolymers with molecular weights of approximately 60 kDa containing poly(2‐vinylpyridine) volume fractions spanning 0.069–0.700 were synthesized using reversible addition fragmentation transfer polymerization and then studied to understand the effect of protonation level, diblock composition, and temperature on the location of the ordering transition and the type of nanostructures formed in a charge asymmetric system. All of the polymers displayed lower critical solution‐type behavior, with the order–disorder transition temperature decreasing with increasing acid content. Polymers with symmetric compositions showed the highest degree of incompatibility for a given degree of protonation, and the observed morphologies for all polymers were consistent with those observed at similar compositions for classical hydrophobic block copolymers. The observed protonation‐induced phase transition can be explained by the shift of the Flory–Huggins parameter due to the alternation of the identity of monomers, consistent with the prediction of Nakamura and Wang's theory. The use of polyvalent ions promotes self‐assembly at lower concentrations, consistent with ionic crosslinking effects between polymer chains that are promoted at high concentration due to exchange entropy in crosslinked polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1181–1190  相似文献   

8.
Based on their rigid‐rod structure all‐conjugated, rod‐rod block copolymers show a preferred tendency to self‐assemble into low‐curvature vesicular or lamellar nanostructures independent from their specific chemical structure and composition. This unique and attractive behaviour is clearly illustrated in a few examples of such all‐conjugated block copolymers. The resulting nanostructured heteromaterials may find applications in electronic devices or artificial membranes.

  相似文献   


9.
10.
We report the design and synthesis of new fully biodegradable thermoresponsive amphiphilic poly(γ‐benzyl L ‐glutamate)/poly(ethyl ethylene phosphate) (PBLG‐b‐PEEP) block copolymers by ring‐opening polymerization of N‐carboxy‐γ‐benzyl L ‐glutamate anhydride (BLG? NCA) with amine‐terminated poly(ethyl ethylene phosphate) (H2N? PEEP) as a macroinitiator. The fluorescence technique demonstrated that the block copolymers could form micelles composed of a hydrophobic core and a hydrophilic shell in aqueous solution. The morphology of the micelles as determined by transmission electron microscopy (TEM) was spherical. The size and critical micelle concentration (CMC) values of the micelles showed a decreasing trend as the PBLG segment increased. However, UV/Vis measurements showed that these block copolymers exhibited a reproducible temperature‐responsive behavior with a lower critical solution temperature (LCST) that could be tuned by the block composition and the concentration.  相似文献   

11.
Ketenimine intermediates generated by the addition of copper acetylides to sulfonyl azides are trapped by (p‐toluenesulfonyl)methyl isocyanide (TsCH2NC), in the presence of Et3N, to afford functionalized pyrroles in moderate‐to‐good yields.  相似文献   

12.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   

13.
The biomolecule‐assisted self‐assembly of semiconductive molecules has been developed recently for the formation of potential bio‐based functional materials. Oligopeptide‐assisted self‐assembly of oligothiophene through weak intermolecular interactions was investigated; specifically the self‐assembly and chirality‐transfer behavior of achiral oligothiophenes in the presence of an oligopeptide with a strong tendency to form β‐sheets. Two kinds of oligothiophenes without (QT) or with (QTDA) carboxylic groups were selected to explore the effect of the end functional group on self‐assembly and chirality transfer. In both cases, organogels were formed. However, the assembly behavior of QT was quite different from that of QTDA. It was found that QT formed an organogel with the oligopeptide and co‐assembled into chiral nanostructures. Conversely, although QTDA also formed a gel with the oligopeptide, it has a strong tendency to self‐assemble independently. However, during the formation of the xerogel, the chirality of the oligopeptide can also be transferred to the QTDA assemblies. Different assembly models were proposed to explain the assembly behavior.  相似文献   

14.
Herein we show that a new amphiphilic poly(vinyl alcohol)‐b‐poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by reduction by sodium borohydride. After deposition of the so‐loaded micelles onto a silicon wafer, followed by an appropriate thermal treatment, the poly(acrylonitrile) core of the micelles is carbonized, while the poly(vinyl alcohol) shell is completely decomposed and volatilized, leading to gold encapsulated in carbon nanoparticles. The morphology of the micelles is maintained during thermal treatment without requiring shell‐cross‐linking of the micelles prior to pyrolysis.  相似文献   

15.
Dipeptide diphenylalanine has attracted significant research interests because of its ability to self‐assemble into various nanostructures such as nanotubes, nanowires, and nanoribbons. In this article, we present the synthesis and self‐assembly of a novel diphenylalanine‐based homopolymer and block/random copolymers by the reversible addition–fragmentation chain transfer (RAFT) polymerization of an acrylamide having a dipeptide moiety. The RAFT polymerization of N‐acryloyl‐l ,l ‐diphenylalanine (A‐Phe‐Phe‐OH) afforded novel amino acid‐based polymers with predetermined molecular weights and relatively narrow‐molecular weight distributions. The hierarchical self‐assembled structures of poly(A‐Phe‐Phe‐OH), which involve nanorods, larger nanofiber‐like microcrystals, and fiber bundles, were characterized by atomic force microscopy (AFM), transmission electron microscopy, scanning electron microscopy, and dynamic light scattering measurements. The circular dichroic measurements of poly(A‐Phe‐Phe‐OH) revealed its characteristic chiroptical property, which is affected by the nature of the solvents and the addition of urea and salts via hydrophobic, hydrogen bonding, and electrostatic interactions. Thermo‐ and pH‐responsive block and random copolymers composed of A‐Phe‐Phe‐OH and N‐isopropylacrylamide were synthesized by RAFT polymerization, and the thermoresponsive properties and assembled structures of the resulting copolymers were investigated by AFM and turbidity measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2562–2574  相似文献   

16.
A novel amphiphilic biodegradable triblock copolymer (PGL‐PLA‐PGL) with polylactide (PLA) as hydrophobic middle block and poly(glutamic acid) (PGL) as hydrophilic lateral blocks was successfully synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and N‐carboxy anhydride (NCA) consecutively and by subsequent catalytic hydrogenation. The results of cell experiment of PGL‐PLA‐PGL suggested that PGL could improve biocompatibility of polyester obviously. The copolymer could form micelles of spindly shape easily in aqueous solution. The pendant carboxyl groups of the triblock copolymer were further activated with N‐hydroxysuccinimide and combined with a cell‐adhesive peptide GRGDSY. Incorporation of the oligopeptide further enhanced the hydrophilicity and led to formation of spherical micelles. PGL‐PLA‐PGL showed better cell adhesion and spreading ability than pure PLA and the GRGDSY‐containing copolymer exhibited even further improvement in cell adhesion and spreading ability, indicating that the copolymer could find a promising application in drug delivery or tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3218–3230, 2007  相似文献   

17.
A facile approach is reported to process rod–coil block copolymers (BCPs) into highly ordered nanostructures in a rapid, low‐energy process. By introducing a selective plasticizer into the rod–coil BCPs during annealing, both the annealing temperature and time to achieve thermodynamic equilibrium and highly ordered structures can be decreased. This process improvement is attributed to enhanced chain mobility, reduced rod–rod interaction, and decreased rod–coil interaction from the additive. The novel method is based on kinetically facilitating thermodynamic equilibrium. The process requires no modification of polymer structure, indicating that a wide variety of desired polymer functionalities can be designed into BCPs for specific applications.

  相似文献   


18.
Herein, the relationship between the supramolecularly self‐assembled nanostructures and the chemical structures of coil‐rod‐coil molecules is discussed. A series of nonamphiphilic coil‐rod‐coil molecules with different alkyl chains, central mesogenic groups, and chemical linkers were designed and synthesized. The solvent‐mediated supramolecular self‐assembling of these coil‐rod‐coil molecules resulted in rolled‐up nanotubes, nanofibers, submicron sized belts, needle‐like microcrystals, and amorphous structures. The self‐assembling behaviors of these coil‐rod‐coil molecules have been systematically investigated to reveal the relationship between the supramolecularly self‐assembled nanostructures and their chemical structures. With respect to the formation of rolled‐up nanotubes by self‐assembly of coil‐rod‐coil molecules, we have systematically investigated the following three influencing structural factors: 1) the alkyl chain length; 2) the central mesogenic group; (3) the linker type. These studies disclosed the key structural features of coil‐rod‐coil molecules for the formation of rolled‐up nanotubes.  相似文献   

19.
The preparation of physically crosslinked hydrogels from quasi ABA‐triblock copolymers with a water‐soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N‐acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one‐pot sequential monomer addition through reversible addition fragmentation chain‐transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic–hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase‐separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self‐healing ability after large strain damage is shown.

  相似文献   


20.
New advances into the chirality effect in the self‐assembly of block copolymers (BCPs) have been achieved by tuning the helicity of the chiral‐core‐forming blocks. The chiral BCPs {[N?P(R)‐O2C20H12]200?x[N?P(OC5H4N)2]x}‐b‐ [N?PMePh]50 ((R)‐O2C20H12=(R)‐1,1′‐binaphthyl‐2,2′‐dioxy, OC5H4N=4‐pyridinoxy (OPy); x=10, 30, 60, 100 for 3 a – d , respectively), in which the [N?P(OPy)2] units are randomly distributed within the chiral block, have been synthesised. The chiroptical properties of the BCPs ([α]D vs. T and CD) demonstrated that the helicity of the BCP chains may be simply controlled by the relative proportion of the chiral and achiral (i.e., [N?P(R)‐O2C20H12] and [N?P(OPy)2], respectively) units. Thus, although 3 a only contained only 5 % [N?P(OPy)2] units and exhibited a preferential helical sense, 3 d with 50 % of this unit adopted non‐preferred helical conformations. This gradual variation of the helicity allowed us to examine the chirality effect on the self‐assembly of chiral and helical BCPs (i.e., 3 a – c ) and chiral but non‐helical BCPs (i.e., 3 d ). The very significant influence of the helicity on the self‐assembly of these materials resulted in a variety of morphologies that extend from helical nanostructures to pearl‐necklace aggregates and nanospheres (i.e., 3 b and 3 d , respectively). We also demonstrate that the presence of pyridine moieties in BCPs 3 a – d allows specific decoration with gold nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号