首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large area (3 × 3 cm2) substrates for surface‐enhanced Raman scattering were fabricated by combining femtosecond laser microstructuring and soft lithography techniques. The fabrication procedure is as follows: (i) femtosecond laser machining is used to create a silicon master copy, (ii) replicates from polydimethylsiloxane are made, and (iii) a 50‐nm‐thick gold film is deposited on the surface of the replicates. The resulting substrates exhibit strongly enhanced absorption in the spectral region of 350 ∼ 1000 nm and generate enhanced Raman signal with enhancement factor of the order of 107 for 10‐ 6 M rhodamine 6G. The main advantages of our substrates are low cost, large active area, and possibility for mass replication. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The ability to control propagation of electromagnetic guided modes lies at the heart of integrated nanophotonics. Surface plasmon‐polaritons are a class of guided modes which can be employed in integrated optical systems. Here, we present a theoretical design of a coherent surface plasmon absorber which can perfectly harvest energy of coherently incident surface plasmons without parasitic scattering into free space modes. Excitation of free space modes which usually accompanies scattering of a surface plasmon by an interface boundary is avoided due to specially tailored anisotropy of the absorber. The concept of coherent SPP absorber is analyzed numerically for spatially non‐uniform and finite‐size structures. We believe that our results will be important for the development of integrated nanoplasmonic systems.  相似文献   

3.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
We report plasmon‐enhanced Raman scattering of the order of 103 by a metallic carbon nanotube partially suspended inside a near‐field cavity. The tube is part of a small bundle, and is interfaced with an Au nanodisc dimer using a recently developed assembly scheme based on dielectrophoretic deposition. Spatially resolved Raman measurements with two excitation wavelengths and two orthogonal polarizations confirm that the enhancement arises from a 65 nm long suspended tube segment. We show that the orientation of the tube inside the cavity can be as effective for generating enhancement as placing the nanotube precisely in a plasmonic hotspot. Position and shape of the G‐peak show that the suspended part of the tube is free of strain and doped with a Fermi energy shift ≤40 meV. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
Silver particles with different degrees of aggregation were synthesized through a sodium dodecyl sulfate‐assisted one‐pot reaction in an aqueous medium. The products were characterized by transmission electron microscopy, scanning electron microscopy and UV‐visible spectroscopy. The results showed that the degree of aggregation of the Ag nanoparticles could be tuned by changing the reaction parameters, such as the reaction temperature and time. A possible formation process of the Ag aggregate is proposed on the basis of a series of experimental results. Moreover, the surface‐enhanced Raman scattering (SERS) effect of the Ag aggregates was evaluated by using rhodamine 6G as a Raman probe molecule. It was demonstrated that the SERS enhancement ability is related to the degree of aggregation of Ag particles, and a high SERS signal can be observed by selecting Ag nanoparticles with the proper degree of aggregation as substrates. Moreover, the aggregates showed good reproducibility and stability to SERS from organic molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
There is a growing interest in using quantum dots (QDs) and metallic nanoparticles (NPs), both for luminescence enhancement and surface‐enhanced Raman scattering (SERS). Here, we study the electromagnetic‐field enhancement that can be generated by lead‐sulfide (PbS) QDs using three‐dimensional finite‐element simulations. We investigate the field enhancement associated with combinations of PbS QDs with metallic NPs and substrates. The results show that high field enhancement can be achieved by combining PbS QDs with metallic NPs of larger sizes. The ideal size for Ag NPs is 25 nm, providing a SERS enhancement factor of ~5*108 for light polarization parallel to the NP dimer axis and a gap of 0.6 nm. For Au NPs, the bigger the size, the higher is the field for the studied diameters, up to 50 nm. The near‐field values for PbS QDs above metallic substrates were found to be lower compared to the case of PbS QD‐metal NP dimers. This study provides the understanding for the design and application of QDs for the enhancement of near‐field phenomena. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Surface‐plasmon‐polariton waves are two‐dimensional electromagnetic surface waves that propagate at the interface between a metal and a dielectric. These waves exhibit unusual and attractive properties, such as high spatial confinement and enhancement of the optical field, and are widely used in a variety of applications, such as sensing and subwavelength optics. The ability to precisely control the spatial and spectral properties of the surface‐plasmon wave is required in order to support the growing interest in both research and applications of plasmonic waves, and to bring it to the next level. Here, we review the challenges and methods for shaping the wavefront and spectrum of plasmonic waves. In particular, we present the recent advances in plasmonic spatial and spectral shaping, which are based on the realization of plasmonic holograms for the optical nearfield.

  相似文献   


9.
One of the greatest challenges in developing protein chips is the detection of trace amounts of proteins on their surfaces. Traditionally employed techniques, such as optical microscopy and fluorescence, are effective and widely used, but it is sometimes hard to obtain fingerprint signals of biomolecules. In this paper, we use surface‐enhanced Raman scattering (SERS) spectroscopy as a platform for protein detection. Micropatterned protein‐mediated Au/Ag sandwich structures were employed as the detecting objects. Two types of proteins, pure hemoprotein and immunocomplex, were used as the media. Au/Ag layers were used as the SERS substrates. The resulting spectra showed good sensitivity and resolution. It indicates that SERS is a powerful tool in protein detection and has great potential for application in protein chips. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A comparative study of the solid substrates used in surface‐enhanced Raman scattering (SERS) based immunoassay is made in this paper. Five different substrates were prepared and divided into two groups with and without SERS activity. They are (1) a poly‐L ‐lysine slide, (2) a glutaraldehyde (GA)‐aminosilane slide, (3) a substrate assembled with silver nanoparticles, (4) a substrate assembled with silver nanoparticles and functionalized with GA–aminosilane and (5) a substrate assembled with gold nanoparticles, of which the first two are substrates are without SERS activity and the latter three are with SERS activity because of the existence of the metallic nanoparticles. The SERS experimental results show that the immunoassay performed on an SERS‐active substrate is more effective than that employing the inactive substrate. Among the inactive substrates, the GA–aminosilane slide with a better ability for antibody immobilization leads to a more sensitive immunoassay than the poly‐L ‐lysine slide. Moreover, for SERS‐based immunoassay, the substrate with assembled silver nanoparticles has an advantage of higher SERS enhancement capacity over the substrate assembled with gold nanoparticles. This work indicates that SERS‐active substrates play important and positive roles in sensitive SERS‐based immunoassay. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and efficient pen‐on‐paper approach is designed to prepare hydrophilic surface enhanced Raman scattering (SERS)‐active lines by directly writing on a piece of hydrophobic poly (L‐lactic acid) nanofibrous paper using a pen filled with plasmonic nanoparticle ink. The pen‐on‐paper‐line SERS substrate exhibits hydrophobic–hydrophilic focusing effects together with negligible background interference, high sensitivity, good reproducibility, and long‐term stability. Furthermore, just by drawing three different plasmonic nanoparticles, the SERS activity is optimized for different molecules. Considering the complex factors involved in SERS effects of real analytes, our results provide an efficient strategy to produce optimized SERS substrates with multiple plasmonic nanoparticles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
采用改进的一步还原法合成了多种海胆状金纳米粒子,并对它们的表面增强喇曼散射特性与其表面形貌的关系进行了实验研究.实验表明,合成的海胆状金纳米粒子的直径及表面的尖刺大小可以通过改变加入到氯金酸溶液中的硝酸银的量来调节.当加入到氯金酸溶液中的硝酸银为1μL时,合成的海胆状金纳米粒子的直径最小而尖刺最长.同时测量的紫外-可见-近红外吸收光谱表明,海胆状金纳米粒子的局域表面等离子体共振带会随着加入到氯金酸溶液中的硝酸银量的增加而变宽.此外,通过喇曼标记分子对巯基苯甲酸(4MBA)的喇曼光谱测量发现,较小直径和较长尖刺的海胆状金纳米粒子具有更强的表面增强喇曼散射活性.  相似文献   

13.
We have explored the effects of the experimental parameters on the surface‐enhanced Raman scattering (SERS) intensities of NO3 and proteins observed by a heat‐induced SERS method developed by our group. The results have shown that a strong SERS signal can be obtained at pH 4.0, using an Ag colloid prepared with the reduction time of 15 min (the average size of Ag nanoparticle is 56.5 nm) dilution prepared Ag colloid by a factor of 2 by use of a 5 mM citrate buffer, using 6 mM NaNO3 and drying the sample at 100 °C, respectively. Based on the results, two possible mechanisms for proteins to form SERS hot sites during the sample preparations are proposed. A semi‐quantitative SERS detection of ribonuclease B has been investigated. Also, NaNO2, Mg (NO3)2, MgSO4 and Na2SO4 have been found to be suitable for the heat‐induced SERS method. Importantly, samples prepared by the heat‐induced SERS method are so stable that these samples can be used as a standard and transferred to different laboratories for direct comparison. Namely, it can overcome uncontrollable aggregation of Ag colloids in a solution sample. All these advantages and the simplicity of experimental setup have demonstrated that the heat‐induced SERS method using NaNO3 as an electrolyte is very promising for label‐free routine and quantitative detection of proteins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Electromagnetic coupling between localised plasmons on metal nanoparticles and the strong localised fields on a micro‐structured surface is demonstrated as a means to increase the enhancement factor in surface‐enhanced Raman scattering (SERS) spectroscopy. Au nanoparticles of diameter 20 nm were deposited on a micro‐structured Au surface consisting of a periodic array of square‐based pyramidal pits (Klarite). The spectra of 4‐aminothiophenol (4‐ATP) were compared before and after deposition of Au nanoparticles on the micro‐structured surface. The addition of Au nanoparticles is shown to provide significantly higher signal intensities, with improvements of the order of ∼103 per molecule compared with spectra obtained from the micro‐structured substrate alone. This hybrid approach offers promise for combining nanoparticles with micro‐ and nano‐structured surfaces in order to design SERS substrates with higher sensitivities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A metallic bowtie nanoring array is designed to gain high sensitive and reproducible substrate for surface‐enhanced Raman scattering (SERS) spectroscopy. The localized surface plasmon resonance (LSPR), the electric field enhancement factors (EFs) and the electric field distribution of the bowtie and bowtie nanoring array are numerically investigated by means of the finite‐difference time domain (FDTD) method. After the optimization of the particle size and the array period, the maximum electromagnetic field EF approaches 153, and the corresponding SERS electromagnetic enhancement factor (EMEF) reaches 5.4 × 108. This highly sensitive and reproducible substrate can be a good candidate for SERS applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Local pH environment has been considered to be a potential biomarker for tumor diagnosis because solid tumors contain highly acidic environments. A pH‐sensing nanoprobe based on surface‐enhanced Raman scattering (SERS) using nanostars under near‐infrared excitation has been developed for potential biomedical applications. To theoretically investigate the effect of protonation state on SERS spectra of p‐mercaptobenzoic acid (pMBA), we used the density functional theory (DFT) with the B3LYP functional to calculate Raman vibrational spectra of pMBA‐Au/Ag complex in both protonated and deprotonated states. Vibrational spectral bands were assigned with DFT calculation and used to investigate SERS spectral changes observed from experiment when varying pH value between five and nine. The SERS peak position of pMBA at ~1580 cm−1 was identified to be a novel pH‐sensing index, which has small but noticeable downshift with pH increase. This phenomenon is confirmed and well‐explained with theoretical simulation. The study demonstrates that SERS is a sensitive tool to monitor minor structural changes due to local pH environment, and DFT calculations can be used to investigate Raman spectra changes associated with minor differences in molecular structure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This work aims to explore the application of silver nanoparticle‐based surface‐enhanced Raman scattering (SERS) for nasopharyngeal carcinoma cell line CNE2's DNA analysis after X‐ray radiation. The cells are separated into control group and radiated groups with different dose of 6, 10, 15 and 20 Gy. The results show that after radiation (6, 10, 15 and 20 Gy), the DNA of radiated CNE2 have changed after 72 h of cell incubation. Principal components analysis is employed for significant differences and the DNA extracted after 72 h of incubation show significant divisions from control group. Moreover, a classifier based on support vector machines shows high classification accuracy between DNA extracted after 72 h of incubation and control group. In conclusion, this study first reveals SERS characteristics of CNE2's DNA under different dose of X‐ray radiation, and the final results may do favor to make known the mechanism of X‐ray radiation interacting with tumor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Surface‐enhanced Raman scattering (SERS) spectroscopy was first employed to detect oxyhemoglobin (OxyHb, the common type of hemoglobin) variation in type II diabetic development without using exogenous reagents. Using silver nanoparticles as SERS‐active substrate, high‐quality SERS spectra are obtained from blood OxyHb samples of 49 diabetic patients and 40 healthy volunteers. Tentative assignment of the observed SERS bands indicates specific structural changes of OxyHb molecule in diabetes, including heme transformation and globin variation. Furthermore, partial least squares and principal component analysis combined with linear discriminate analysis diagnostic algorithms are employed to analyze and classify the SERS spectra acquired from diabetic and healthy OxyHb, yielding the diagnostic accuracies of 90.0% and 95.5%, respectively. This exploratory work suggests that the silver nanoparticles‐based OxyHb SERS method in combination with multivariate statistical analysis has great potential for the label‐free detection of type II diabetes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The adsorption of cationic and neutral R6G molecules on Au nanoparticles was elucidated by surface enhanced Raman scattering (SERS). The steric hindrance at hydroethyl amino (‐N(H)Et) groups in R6G was evidenced by the observation that R6G+ adsorb on as‐prepared gold nanoparticles (AuNPs) only with electrostatic forces, in contrast to the electrostatic and chemical adsorption of R123+ with dihydro amino (‐NH2) groups on as‐prepared AuNPs. Large steric hindrance at the amino groups in R6G yielded saturated coverage of 700 molecules/AuNP for R6G+ significantly fewer than 1000 molecules/AuNP for R123+. In addition, neutral R6G0 on AuNPs showed markedly enhanced peaks at 1200–1600 cm−1, which were not observed in Raman spectra of R6G0 in bulk solution, and also in SERS of R6G+ on AuNPs. These bands are attributed to vibrational modes of an outer phenyl ring and ethyl amino groups, which are vertical to a xanthene plane, on the basis of theoretical analysis of molecular vibrations. Thus, Raman scattering of these bands is enhanced under an inclined orientation of R6G0 molecules chemisorbed on AuNPs via lone pair electrons at amino groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
We present a high‐throughput method for fabricating large arrays of surface‐enhanced Raman scattering (SERS) active gold dimers. Using a large‐area/low‐cost nanopatterning method in conjunction with a meniscus force deposition technique, we were able to create large arrays of uniformly spaced nanoclusters comprising two 60‐nm gold nanospheres. Raman measurements of a thiophenol monolayer deposited on smaller scale arrays of aligned dimers yielded enhancement factors as high as 109. Polarization‐controlled measurements show spectral peak heights to be 10–100 times smaller when the incident beam is polarized perpendicularly to the dimer axis, confirming that the measured enhancements arise from the ‘hot spots’ between the two nanospheres. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号