首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface‐enhanced Raman scattering studies were performed using nonresonant (514.5 nm) and resonant (676.4 nm) optical excitations on single‐walled carbon nanotubes thoroughly separated into semiconducting (pure 99%) and metallic (pure 98%) components. Regardless of the support (Au or Ag), the metallic nanotubes do not present an anomalous anti‐Stokes Raman emission. Regardless of whether an on‐resonant or off‐resonant optical excitation is used, only the semiconducting nanotubes produce an abnormal anti‐Stokes Raman emission that grows when increasing the excitation light intensity or temperature. The Raman studies under light polarized relative to the main nanotube axis demonstrate that only semiconducting nanotubes are sensitive toward changes in the polarization of the excitation light. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The capability of anti‐Stokes/Stokes Raman spectroscopy to evaluate chemical interactions at the interface of a conducting polymer/carbon nanotubes is demonstrated. Electrochemical polymerisation of the monomer 3,4‐ethylenedioxythiophene (EDOT) on a Au support covered with a single‐walled carbon nanotube (SWNT) film immersed in a LiClO4/CH3CN solution was carried out. At the resonant optical excitation, which occurs when the energy of the exciting light coincides with the energy of an electronic transition, poly(3,4‐ethylenedioxythiophene) (PEDOT) deposited electrochemically as a thin film of nanometric thickness on a rough Au support presents an abnormally intense anti‐Stokes Raman spectrum. The additional increase in Raman intensity in the anti‐Stokes branch observed when PEDOT is deposited on SWNTs is interpreted as resulting from the excitation of plasmons in the metallic nanotubes. A covalent functionalisation of SWNTs with PEDOT both in un‐doped and doped states takes place when the electropolymerisation of EDOT, with stopping at +1.6 V versus Ag/Ag+, is performed on a SWNT film deposited on a Au plate. The presence of PEDOT covalently functionalised SWNTs is rationalised by (1) a downshift by a few wavenumbers of the polymer Raman line associated with the symmetric C C stretching mode and (2) an upshift of the radial breathing modes of SWNTs, both variations revealing an interaction between SWNTs and the conjugated polymer. Raman studies performed at different excitation wavelengths indicate that the resonant optical excitation is the key condition to observe the abnormal anti‐Stokes Raman effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This Letter reports the laser energy dependence of the Stokes and anti-Stokes Raman spectra of carbon nanotubes dispersed in aqueous solution and within solid bundles, in the energy range 1.52-2.71 eV. The electronic transition energies (E(ii)) and the radial breathing mode frequencies (omega(RBM)) are obtained for 46 different (18 metallic and 28 semiconducting) nanotubes, and the (n,m) assignment is discussed based on the observation of geometrical patterns for E(ii) versus omega(RBM) graphs. Only the low energy component of the E(M)(11) value is observed from each metallic nanotube. For a given nanotube, the resonant window is broadened and down-shifted for single wall carbon nanotube (SWNT) bundles compared to SWNTs in solution, while by increasing the temperature, the E(S)(22) energies are redshifted for S1 [(2n+m) mod 3=1] nanotubes and blueshifted for S2 [(2n+m) mod 3=2] nanotubes.  相似文献   

4.
Non‐degenerate second‐order scattering due to interaction of infrared and ultraviolet pulses is observed in picosecond infrared‐pump/anti‐Stokes Raman‐probe experiments under electronic resonance conditions. We detected resonance hyper‐Rayleigh scattering at the sum frequency of the pulses as well as the corresponding frequency‐down‐shifted resonance hyper‐Raman lines. Nearly coinciding resonance hyper‐Raman and one‐photon resonance Raman spectra indicate conditions of A‐term resonance Raman scattering. Second‐order scattering is distinguished from transient anti‐Stokes Raman scattering of v = 1 to v = 0 transitions and v = 1 to v′ = 1 combination transitions by taking into account their different spectral and temporal behaviour. Separating these processes is essential for a proper analysis of transient vibrational populations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The progress on anti‐Stokes photoluminescence and Stokes and anti‐Stokes Raman scattering in GaN single crystals and GaN/AlN heterostructures is reviewed. Anti‐Stokes photoluminescence investigated in the past was primarily attributed to two‐photon absorption, three‐photon absorption, and phonon‐assisted absorption. On the other hand, anti‐Stokes Raman scattering was used to determine electron‐phonon scattering time and decay time constant for longitudinal‐optical phonons. In a typical high electron mobility transistor based on GaN/AlN heterostructures, strong resonances were reached for first‐order and second‐order Raman scattering processes. Therefore, both Stokes and anti‐Stokes Raman intensities were dramatically enhanced. The feasibility of laser cooling of a nitride structure has been demonstrated. Anti‐Stokes photoluminescence and Raman scattering have potential applications in upconversion lasers and laser cooling of nitride ultrafast electronic and optoelectronic devices.  相似文献   

6.
The Raman spectrum of single wall carbon nanotubes (SWNTs) prepared by high pressure CO decomposition (HiPCO process) has been recorded at nine excitation laser energies ranging from 1.83 eV to 2.71 eV. The characteristic nanotubes features: G band, D band and radial breathing mode (RBM) have been analyzed and compared to those of an arc discharge SWNT material of similar diameter. A strong Breit-Wigner-Fano type (metallic) contribution to the G band was found in the spectra measured with green lasers, while spectra measured with red lasers indicate resonances of semiconducting SWNTs. Analysis of the energy dependence of the position of the D band revealed sinusoid oscillations superimposed on a linear trend. The validity of full DOS calculations for HiPCO materials has been confirmed by a match found between the estimated spectral contribution of metallic SWNTs as calculated from the components of the measured G band and as predicted by the (n, m) indexes of the major scatterers of DOS simulations. The RBM region of the HiPCO spectrum is more complex than usually observed for SWNTs. The analysis performed with a Gaussian distribution and improved fitting parameters leads to a mean diameter and variance of 1.05 nm and 0.15 nm, respectively. A bimodal Gaussian distribution had little influence on the error sum but reduced the standard error slightly. The major spectral features of the RBM could be interpreted using available resonance Raman theory. Received 5 February 2002 / Received in final form 3 April 2002 Published online 19 July 2002  相似文献   

7.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We show that the Raman scattering technique can give complete structural information for one-dimensional systems, such as carbon nanotubes. Resonant confocal micro-Raman spectroscopy of an (n,m) individual single-wall nanotube makes it possible to assign its chirality uniquely by measuring one radial breathing mode frequency omega(RBM) and using the theory of resonant transitions. A unique chirality assignment can be made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t). For example, the strong RBM intensity observed at 156 cm(-1) for 785 nm laser excitation is assigned to the (13,10) metallic chiral nanotube on a Si/SiO2 surface.  相似文献   

9.
Influence of electron‐beam (e‐beam) irradiation on multi‐walled (MW) and single‐walled (SW) carbon nanotube films grown by microwave chemical vapor deposition technique is investigated. These films were subjected to an e‐beam energy of 50 keV from a scanning electron microscope for 2.5, 5.5, 8.0, and 15 h, and to 100 and 200 keV from a transmission electron microscope for a few minutes to ∼2 h continuously. Such conditions resemble an increased temperature and pressure regime enabling a degree of structural fluidity. To assess structural modifications, they were analyzed prior to and after irradiation using resonance Raman spectroscopy (RRS) in addition to in situ monitoring by electron microscopy. The experiments showed that with extended exposures, both types of nanotubes displayed various local structural instabilities including pinching, graphitization/amorphization, and formation of an intramolecular junction (IMJ) within the area of electron beam focus possibly through amorphous carbon aggregates. RRS revealed that irradiation generated defects in the lattice as quantified through (1) variation of the intensity of radial breathing mode (RBM), (2) intensity ratio of D to G band (ID/IG), and (3) positions of the D and G bands and their harmonics (D* and G*) and combination bands (D + G). The increase in the defect‐induced D band intensity, quenching of RBM intensity, and only a slight increase in G band intensity are some of the implications. The MW nanotubes tend to reach a state of saturation for prolonged exposures, while the SW ones transform from a semiconducting to a quasi‐metallic character. Softening of the q = 0 selection rule is suggested as a possible reason to explain these results. Furthermore, these studies provide a contrasting comparison between MW and SW nanotubes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube surface. The adsorbate is treated as an elastic shell which couples with the radial breathing mode (RBM) of the nanotube via van der Waal interactions. Using analytical methods as well as molecular simulation, we observe a low frequency breathing mode for the adsorbed fluid at approximately 50 cm-1, as well as diameter dependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones.  相似文献   

11.
Surface enhancement factors of at least 10(12) for the Raman scattering of single-walled carbon nanotubes in contact with fractal silver colloidal clusters result in measuring very narrow Raman bands corresponding to the homogeneous linewidth of the tangential C-C stretching mode in semiconducting nanotubes. Normal and surface-enhanced Stokes and anti-Stokes Raman spectra are discussed in the framework of selective resonant Raman contributions of semiconducting or metallic nanotubes to the Stokes or anti-Stokes spectra, respectively, of the population of vibrational levels due to the extremely strong surface-enhanced Raman process, and of phonon-phonon interactions.  相似文献   

12.
We study the optical properties of a single, semiconducting single-walled carbon nanotube (CNT) that is partially suspended across a trench and partially supported by a SiO2-substrate. By tuning the laser excitation energy across the E 33 excitonic resonance of the suspended CNT segment, the scattering intensities of the principal Raman transitions, the radial breathing mode (RBM), the D mode and the G mode show strong resonance enhancement of up to three orders of magnitude. In the supported part of the CNT, despite a loss of Raman scattering intensity of up to two orders of magnitude, we recover the E 33 excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak intensity ratio between G band and D band is highly sensitive to the presence of the substrate and varies by one order of magnitude, demonstrating the much higher defect density in the supported CNT segments. By comparing the E 33 resonance spectra measured by Raman excitation spectroscopy and photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we observe that the peak energy in the PL excitation spectrum is red-shifted by 40 meV. This shift is associated with the energy difference between the localized exciton dominating the PL excitation spectrum and the free exciton giving rise to the Raman excitation spectrum. High-resolution Raman spectra reveal substrate-induced symmetry breaking, as evidenced by the appearance of additional peaks in the strongly broadened Raman G band. Laser-induced line shifts of RBM and G band measured on the suspended CNT segment are both linear as a function of the laser excitation power. Stokes/anti-Stokes measurements, however, reveal an increase of the G phonon population while the RBM phonon population is rather independent of the laser excitation power.  相似文献   

13.
Two strong bands centered at 446 and 607 cm−1 have been observed in the FT‐Raman spectrum of almandine [Fe3Al2(SiO4)3] excited with 1064 nm, which were completely absent in the corresponding dispersive Raman spectra obtained using 488, 514.5 and 532 nm excitation. Furthermore, the mentioned strong bands have not been registered in the anti‐Stokes side of the FT‐Raman spectrum, and were therefore assigned to laser‐induced fluorescence bands. Their appearance is related to the presence of rare‐earth element traces as impurities in the almandine sample. Additionally, the FT‐Raman (and dispersive Raman) spectrum of the isomorphous spessartine [Mn3Al2(SiO4)3] mineral has been introduced, which did not show the presence of these fluorescence emission bands. The purity of the minerals was confirmed by study of their powder X‐ray diffraction (PXRD) patterns. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This article reports an efficient method to simulate time and frequency resolved coherent anti‐Stokes Raman scattering spectra measured with picosecond pump and probe fields and ultrashort Stokes pulses. A systematic comparison of measured and simulated time and frequency dependent data is presented for carbon tetrachloride, chloroform, cyclohexane, octane, and poly(methyl methacrylate). While the first compound exhibits no Raman active modes in the considered spectral region of the CH‐stretch vibrations, the other ones show Raman spectra of increasing complexity. Vibrational frequencies and homogeneous dephasing rates are extracted by fitting explicit analytical formulas to the recorded data. Interference between nonresonant and resonant contributions to the nonlinear polarization is taken fully into account. The ability to measure the influence of inhomogeneous broadening is discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
We report on an accurate intensity calibration method for low wavenumber Raman spectroscopy. It uses the rotational Raman spectrum of N2. The intensity distributions in the rotational Raman spectra of diatomic molecules are theoretically well established. They can be used as primary intensity standards for intensity calibration. The intensity ratios of the Stokes and anti‐Stokes transitions originating from the same rotational levels are not affected by thermal population. Taking the effect of rotation–vibration interactions appropriately into account, we are able to calculate these intensity ratios theoretically. The comparison between the observed and calculated ratios of the N2 pure rotational spectrum provides an accurate relative sensitivity curve (error ~5 × 10−4) in the wavenumber region of −150 to 150 cm−1. We determine the temperature of water solely from the low wavenumber Raman spectra, using a thus calibrated spectrometer. The Raman temperature shows an excellent agreement with the thermocouple temperature, with only 0.5 K difference. The present calibration technique will be highly useful in many applications of low wavenumber quantitative Raman spectroscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(4‐bromophenylcarbamoyl)phenyl acetate were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighbouring oxygen atom. The simultaneous IR and Raman activations of the CO stretching mode give the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with similar reported structures. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non‐linear optics. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Raman and surface‐enhanced Raman scattering (SERS) spectra of dapsone by using colloidal silver nanoparticles have been recorded. Density functional theory was used for the optimization of ground state geometries and simulation of the vibrational spectrum of this molecule. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman as well as the SERS normal modes and the corresponding assignments, along with the modeling of the free dapsone and the one in the presence of the colloidal silver nanoparticles, the importance of the sulfone group on the SERS effect in dapsone was inferred. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Here, we study a low (less than 0.1 µg/ml) concentration aqueous suspension of single‐wall carbon nanotubes (SWNTs) by Raman‐induced Kerr effect spectroscopy (RIKES) in the spectral bands 0.1–10 and 100–250 cm−1. This method is capable of carrying out direct investigation of SWNT hydration layers. A comparison of RIKES spectra of SWNT aqueous suspension and that of milli‐Q water shows a considerable growth in the intensity of low wavenumber Raman modes. These modes in the 0.1–10 cm−1 range are attributed to the rotational transitions of H2O2 and H2O molecules. We explain the observed intensity increase as due to the production of hydrogen peroxide and the formation of a low‐density depletion layer on the water–nanotube interface. A few SWNT radial breathing modes (RBM)are observed (ωRBM = 118.5, 164.7 and 233.5 cm−1) in aqueous suspension, which allows us to estimate the SWNT diameters (∼2.0, 1.5, and 1 nm, respectively). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The experimental and theoretical study on the structures and vibrations of 5‐fluoro‐salicylic acid and 5‐chloro‐salicylic acid (5‐FSA and 5‐ClSA, C7H5FO3 and C7H5ClO3) is presented. The Fourier transform infrared spectra (4000–400 cm−1) and the Fourier transform Raman spectra (4000–50 cm−1) of the title molecules in the solid phase were recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman intensities and Raman scattering activities were calculated for a pair of molecules linked by the intermolecular O H···O hydrogen bond. The geometrical parameters and energies of 5‐FSA and 5ClSA were obtained for all eight conformers/isomers from density functional theory (DFT) (B3LYP) with 6‐311++G(d,p) basis set calculations. The computational results identified the most stable conformer of 5‐FSA and 5‐ClSA as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The spectroscopic and theoretical results were compared with the corresponding properties for 5‐FSA and 5‐ClSA monomers and dimer of C1 conformer. The optimized bond lengths, bond angles and calculated wavenumbers showed the best agreement with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The electronic spectra for double-wall zigzag and armchair nanotubes are found. The influence of nanotube curvatures on the electronic spectra is also calculated. Our finding that the outer shell is hole doped by the inner shell is in the difference between Fermi levels of individual shells which originate from the different hybridization of π orbital. The shift and rotation of the inner nanotube with respect to the outer nanotube are investigated. We found stable semimetal characteristics of the armchair DWNTs in regard of the shift and rotation of the inner nanotube. We predict the shift of kF towards the bigger wave vectors with decreasing of the radius of the armchair nanotube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号