首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Yu-Jia Sun 《中国物理 B》2021,30(11):117104-117104
Ultrathin van der Waals (vdW) magnets provide a possibility to access magnetic ordering in the two-dimensional (2D) limit, which are expected to be applied in the spintronic devices. Raman spectroscopy is a powerful characterization method to investigate the spin-related properties in 2D vdW magnets, including magnon and spin-lattice interaction, which are hardly accessible by other optical methods. In this paper, the recent progress of various magnetic properties in 2D vdW magnets studied by Raman spectroscopy is reviewed, including the magnetic transition, spin-wave, spin-lattice interaction, symmetry tuning induced by spin ordering, and nonreciprocal magneto-phonon Raman scattering.  相似文献   

2.
The existence of spontaneous magnetization in low dimensional magnetic systems has attracted intensive studies since the early 60s and research remains very active even now. Only recently, magnetic van der Waals (vdW) systems down to a few layers have been broadly discussed for their magnetic order ground states at finite temperature. The naturally inherited layered structure of the vdW magnetic systems possessing onsite magnetic anisotropy from band electrons can suppress the long-range fluctuations. This provides an excellent vehicle to study the transition of magnetism to 2D limits both theoretically and experimentally. Here the current status of 2D vdW magnetic system and its potential applications are briefly summarized and discussed.  相似文献   

3.
Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.  相似文献   

4.
《Physics letters. A》2020,384(21):126532
Based on the first principles calculations, we have systematically investigated the electronic structures of Cu2Si/C2N van der Waals (vdW) heterostructures. We discovered that the electronic structures of Cu2Si and C2N monolayers are preserved in Cu2Si/C2N vdW heterostructures. There is a transition from the n-type Schottky contact to Ohmic contact when the interfacial distance decreases from 4.4 to 2.7 Å, which indicates that the Schottky barrier can be tuned effectively by the interfacial distance. Meanwhile, we find that the carrier concentration between the Cu2Si and C2N interfaces in the vdW heterostructures can be tuned. These findings suggest that the Cu2Si/C2N vdW heterostructure is a promising candidate for application in future nanoelectronics and optoelectronics devices.  相似文献   

5.
二维范德瓦尔斯材料(可简称二维材料)已发展成为备受瞩目的材料大家族,而由其衍生的二维范德瓦尔斯异质结构的集成、性能及应用是现今凝聚态物理和材料科学领域的研究热点之一.二维范德瓦尔斯异质结构为探索丰富多彩的物理效应和新奇的物理现象,以及构建新型的自旋电子学器件提供了灵活而广阔的平台.本文从二维材料的转移技术着手,介绍二维范德瓦尔斯异质结构的构筑、性能及应用.首先,依据湿法转移和干法转移的分类,详细介绍二维范德瓦尔斯异质结构的制备技术,内容包括转移技术的通用设备、常用转移方法的具体操作步骤、三维操纵二维材料的方法、异质界面清洁.随后介绍二维范德瓦尔斯异质结构的性能和应用,重点介绍二维磁性范德瓦尔斯异质结构,并列举在二维范德瓦尔斯磁隧道结和摩尔超晶格领域的应用.因此,二维材料转移技术的发展和优化将进一步助力二维范德瓦尔斯异质结构在基础科学研究和实际应用上取得突破性的成果.  相似文献   

6.
二维范德瓦尔斯材料(可简称二维材料)已发展成为备受瞩目的材料大家族,而由其衍生的二维范德瓦尔斯异质结构的集成、性能及应用是现今凝聚态物理和材料科学领域的研究热点之一.二维范德瓦尔斯异质结构为探索丰富多彩的物理效应和新奇的物理现象,以及构建新型的自旋电子学器件提供了灵活而广阔的平台.本文从二维材料的转移技术着手,介绍二维范德瓦尔斯异质结构的构筑、性能及应用.首先,依据湿法转移和干法转移的分类,详细介绍二维范德瓦尔斯异质结构的制备技术,内容包括转移技术的通用设备、常用转移方法的具体操作步骤、三维操纵二维材料的方法、异质界面清洁.随后介绍二维范德瓦尔斯异质结构的性能和应用,重点介绍二维磁性范德瓦尔斯异质结构,并列举在二维范德瓦尔斯磁隧道结和摩尔超晶格领域的应用.因此,二维材料转移技术的发展和优化将进一步助力二维范德瓦尔斯异质结构在基础科学研究和实际应用上取得突破性的成果.  相似文献   

7.
《Current Applied Physics》2018,18(6):673-680
We have used first-principles calculations to investigate the electronic and optical properties of GaS/GaSe van der Waals heterostructures formed by stacking two-dimensional GaSe and GaSe monolayers. Our findings confirm that the GaS/GaSe heterostructures transform from an indirect to a direct band gap material for the two stackings considered in this study. In addition, we found that the direct band gaps are 1.780 eV and 1.736 eV for AA and AB stacking, respectively. It is observed that the behavior of the optical properties of AA stacking is similar to AB stacking with some differences in details and both heterostructures located in UV range. The refractive index values are 2.21 (AA pattern) and 2.18 (AB pattern) at zero photon energy limit and increase to 2.937 for AA and 2.18 AB patterns and both located in the visible region. More importantly, the GaS/GaSe heterostructures have a variety of extraordinary electronic and optical properties. Accordingly, these heterostructures can be useful for the solar cell, nanoelectronics, and optoelectronic applications.  相似文献   

8.
We present GW many-body results for ground-state properties of two simple but very distinct families of inhomogeneous systems in which traditional implementations of density-functional theory (DFT) fail drastically. The GW approach gives notably better results than the well-known random-phase approximation, at a similar computational cost. These results establish GW as a superior alternative to standard DFT schemes without the expensive numerical effort required by quantum Monte Carlo simulations.  相似文献   

9.
In this study, the structural, electronic and optical properties of the two-dimensional heterostructure based on ZnO and Mg(OH)2 are investigated by first-principle calculations. The ZnO/Mg(OH)2 heterostructure, formed by van der Waals (vdW) interaction, possesses a type-II band structure, which can separate the photogenerated electron–holes constantly. The heterostructure has decent band edge positions for the redox reaction to decompose the water at pH 0 and 7. As for the interfacial properties of the heterostructure, the trend of band bending of the ZnO and Mg(OH)2 layers in the heterostructure is addressed, which will result a built-in electric field. Besides, the charge-density difference and potential drop across the interface of the ZnO/Mg(OH)2 vdW heterostructure are also calculated. Finally, the heterostructure is demonstrated that it not only has excellent ability to capture the light near the visible spectrum region, but also can improve the optical performance for the monolayered ZnO and Mg(OH)2.  相似文献   

10.
Dolomite precipitation, limited at low temperature, appears to be impacted by microbial extracellular polymeric substances (EPS). The presence of dolomites has been reported in the extreme environments of Arabian Gulf sabkhas. Many of these sites are characterized by extensive growth of cyanobacterial mats that are recognized as key producers of EPS. However, no information has been gathered on the cyanobacterial EPS involvement in dolomite precipitation. The objective of this study was to obtain in situ information on the spatial distribution of cyanobacterial EPS and dolomite in Khor Al‐Adaid sabkha (Qatar) sediments by chemical mapping. For this purpose, in situ 2D Raman spectroscopy and atomic force microscopy were applied. Additionally, samples were analyzed with scanning electron microscopy and X‐ray diffraction. Raman fingerprints of dolomite (300, 725, and 1098 cm−1), cyanobacteria, and their EPS (1000, 1130, 1148, and 1508 cm−1) were observed widely distributed in the top 2 cm of the sabkhas sediments. 2D chemical imaging of sediment layers characterized minerals and organic matter of microbial origins at high spatial resolution. Raman mapping indicated small dolomite clusters (<2 µm) embedded in a dense cyanobacterial EPS matrix. The spatial distribution showed that small dolomite clusters are closely associated with cyanobacterial EPS and organic carbon. Our results prove that cyanobacterial molecules are closely related to dolomite in the sabkhas sediments. This study demonstrated that Raman mapping is a robust and sensitive technique for acquisition of in situ information on cell–mineral interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Transition metal dichalcogenides (TMDC) are important representatives in the emerging field of two‐dimensional materials. At present their combination with molecular films is discussed as it enables the realization of van der Waals bound organic/inorganic hybrids which are of interest in future device architectures. Here, we discuss the potential use of molybdenum disulfide (MoS2) as supporting substrate for the growth of well‐defined, crystalline organic adlayers. By this means, hybrid systems between the TMDC surface and organic compounds can be prepared, allowing for the profound investigation of mutual optical and electronic coupling mechanisms. As model system, we choose pentacene and perfluoropentacene as prototypical organic semiconductors and analyze their film formation on MoS2(001) surfaces. In both cases, we observe smooth, crystalline film growth in lying molecular configuration, hence enabling the preparation of well‐defined hybrid systems. By contrast, on defective MoS2 surfaces both materials adopt an upright molecular orientation and exhibit distinctly different film morphologies. This emphasizes the importance of highly ordered TMDC surfaces with low defect density for the fabrication of well‐defined hybrid systems.  相似文献   

12.
13.
A new ternary van der Waals complex of the type rare gas-rare gas'-linear molecule, ArNe-N2O, was investigated using a pulsed molecular beam cavity Fourier transform microwave spectrometer. The rotational spectra of six isotopomers of the trimer were studied in detail. These include Ar20Ne-14N14NO, Ar22Ne-14N14NO, Ar20Ne-15N14NO, Ar22Ne-15N14N0, Ar20Ne-14N15NO and Ar22Ne-14N15NO. Nuclear quadrupole hyperfine structures of the rotational transitions that are due to the one or two 14N nuclei were resolved and analysed. The resulting spectroscopic constants were used to provide structural and dynamical information about the trimer. Based on the quartic centrifugal distortion constants, a harmonic force field analysis was performed to estimate the frequencies of the van der Waals vibrational modes. A perturbation of the electronic charge distribution at the site of the central 14N nucleus of N20 upon complex formation was detected and discussed. Differences of structural parameters of the trimer as compared to those of the respective dimer units are indicative of the presence of significant three-body non-additive contributions to the interaction energy.  相似文献   

14.
通过第一性原理计算探讨了蓝磷烯与过渡金属硫化物MoTe2/WTe2形成范德瓦耳斯异质结的电子结构和光学性质,以及施加双轴应力对相关性质的影响.计算结果表明,形成BlueP/XTe2(X=Mo,W)异质结,二者能带排列为间接带隙type-Ⅱ并有较强的红外光吸收,同时屏蔽特性增强.随压缩应力增加,BlueP/XTe2转变为直接带隙type-Ⅱ能带排列最后转变为金属性;随拉伸应力增加,异质结转变为间接带隙type-Ⅰ能带排列.外加应力也能有效调控异质结的光吸收性质,随压缩应力增加吸收边红移,光吸收响应拓展至中红外光谱区且吸收系数增大;BlueP/MoTe2较BlueP/WTe2在中红外至红外光区间表现出更强的光吸收响应;静态介电常数ε1(0)大幅增加.结果表明,压缩应力对BlueP/MoTe2和BlueP/WTe2能带排列、光吸收特性均有显著的调控作用,其中BlueP/MoTe2对调控更敏感,这些特性也使BlueP/XTe2异质结在窄禁带中红外半导体材料及光电器件具有令人期待的应用价值.  相似文献   

15.
Raman spectroscopy/mapping is used to investigate the variation of Si phonon wavenumbers, i.e., lower wavenumber (LW ~ 495–510 cm−1) and higher wavenumber (HW ~ 515–519 cm−1) phonons, observed in Si–SiO2 multilayer nanocomposite (NCp) grown using pulsed laser deposition. Sensitivity of Raman spectroscopy as a local probe to surface/interface is effectively used to show that LW and HW phonons originate at surface (Si–SiO2 interface) and core of Si nanocrystals, respectively. The consistent picture of this understanding is developed using Raman spectroscopy monitored laser heating/annealing and cooling experiment at the site of the desired wavenumber, chosen with the help of Raman mapping. Raman spectra calculations for Si41 cluster with oxygen and hydrogen termination show strong mode at 512 cm−1 for oxygen terminated cluster corresponding to the vibration of surface Si atoms. This supports our attribution of LW phonons to be originating at the Si–SiO2 surface/interface. These results along with XPS show that nature of interface (oxygen bonding) in turn depends on the size of nanocrystals and LW phonons originate at the surface of smaller Si nanocrystals. The understanding developed can conclude the ongoing debate on large variation in Si phonon wavenumbers of Si–SiO2 NCps in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
本文利用第一性原理PBE密度泛函理论计算的方法设计了一种由炔基链、吡啶环及少量氢原子组成的具有内凹六边形结构单元的新型理想二维碳纳米结构,并对其平面内负泊松比效应等力学性能和光学性能与电子结构进行了预测.计算表明,该2D材料具有较好的结构稳定性和特殊的力学性能.当将该2D结构在面内(bc面)沿c方向压缩时,其在b方向收缩;当沿c方向拉伸时,其在b方向伸长,即该2D结构同样具有期望的负泊松比效应.材料的泊松比为-3.26;将该2D结构沿b方向拉伸时,c方向将随之伸长;沿b方向压缩时,c方向将随之收缩.沿b方向拉伸或压缩时,泊松比约为-1.951.即该2D材料在面内具有非常显著的负泊松比效应.此外,该2D材料表现出半导体材料的电子结构特征和良好的光反射和折射性能.希望本工作能为具有本征负泊松比效应和优良电子与光学功能的理想二维碳纳米材料的开发提供一种理想的结构设计策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号