首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen, nitrogen, and sulfur species (RONSS) are cross‐reacting and involved in a myriad of physiological and pathological processes. Similar to acidic pH, overexpressed enzymes, and other specific stimuli found in pathological microenvironments, RONSS are recognized as a category of emerging triggering events and have been employed to design activatable theranostic nanomaterials. In this regard, a plethora of RONSS‐responsive nanovectors including polymeric micelles and vesicles (also referred to as polymersomes) are constructed. In comparison with micelles, polymersomes comprising aqueous interiors enclosed by hydrophobic membranes show intriguing applications in synergistic delivery of both hydrophobic and hydrophilic drugs, nanoreactors, and artificial organelles. This feature article focuses on the recent developments in the fabrication of RONSS‐responsive polymersomes and their potential biomedical applications in terms of triggered drug delivery.

  相似文献   


2.
Tuning the chain‐end functionality of a short‐chain cationic homopolymer, owing to the nature of the initiator used in the atom transfer radical polymerization (ATRP) polymerization step, can be used to mediate the formation of a gel of this poly(electrolyte) in water. While a neutral end group gives a solution of low viscosity, a highly homogeneous gel is obtained with a phosphonate anionic moiety, as characterized by rheometry and diffusion nuclear magnetic resonance (NMR). This novel type of supramolecular control over poly(electrolytic) gel formation could find potential use in a variety of applications in the field of electro‐active materials.

  相似文献   


3.
A one‐pot method is introduced for the successful synthesis of narrow‐distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 106 g mol−1) and micro‐/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization‐induced self‐assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro‐/nanoparticles under mild conditions in one pot.

  相似文献   


4.
The direct synthesis of structurally well‐defined protic polymeric ionic liquid (PIL) with controlled molecular weight and molecular weight distribution is examined using N,N‐diethyl‐N‐(2‐methacryloylethyl) ammonium bis(tri‐fluoromethylsulfonyl)imide (DEMH‐TFSI) as a monomer. Three polymerization methods, namely, atom transfer radical polymerization (ATRP), activators regenerated by electron transfer (ARGET)‐ATRP, and organotellurium‐mediated living radical polymerization (TERP) are employed in this study. While the polymerization by ATRP is slow and does not reach high monomer conversion that under ARGET‐ATRP and TERP proceeds smoothly and affords structurally well‐defined poly(DEMH‐TFSI)s. TERP is especially efficient for the control and poly(DEMH‐TFSI)s with low to high molecular weights ( = 49 100–392 500) and narrow molecular weight distributions (/ = 1.17–1.46) are obtained. These results represent the first example of synthesis of a structurally well‐defined protic, ammonium PIL by direct polymerization of the protic ionic liquid monomer. The polymerization of N,N‐diethyl‐N‐(2‐methacryloylethyl)‐N‐methylammonium bis(trifluoromethylsulfonyl)imide (DEMM‐TFSI), which possesses a quaternary ammonium salt, also proceeds in a highly controlled manner under TERP conditions. A diblock copolymer, polystyrene‐block‐poly(DEMH‐TFSI), is also successfully synthesized by TERP.

  相似文献   


5.
This work demonstrates a new halogenation reaction through sequential radical and halogen transfer reactions, named as “radical and atom transfer halogenation” (RATH). Both benzoxazine compounds and poly(2,6‐dimethyl‐1,4‐phenylene oxide) have been demonstrated as active species for RATH. Consequently, the halogenated compound becomes an active initiator of atom transfer radical polymerization. Combination of RATH and sequential ATRP provides an convenient and effective approach to prepare reactive and crosslinkable polymers. The RATH reaction opens a new window both to chemical synthesis and molecular design and preparation of polymeric materials.

  相似文献   


6.
Iron‐mediated atom transfer radical polymerization (ATRP) has gained extensive attention because of the superiority of iron catalysts, such as low toxicity, abundant reserves, and good biocompatibility. Herein, a practical iron catalyst recycling system, photoinduced iron‐based water‐induced phase separable catalysis ATRP with initiators for continuous activator regeneration, at room temperature is developed for the first time. In this polymerization system, the polymerization is conducted in homogenous solvents consisting of p‐xylene and ethanol, using commercially available 5,10,15,20‐tetraphenyl‐21H,23H‐porphine iron(III) chloride as the iron catalyst, ethyl 2‐bromophenylacetate as the ATRP initiator, 2,4,6‐trimethylbenzoyl diphenylphosphine oxide as the photoinitiator, and poly(ethylene glycol) methyl ether methacrylate as the model hydrophilic monomer. After polymerization, a certain amount of water is added to induce the phase separation so that the catalyst can be separated and recycled in p‐xylene phase with very low residual metal complexes (<12 ppm) in the resultant polymers even after six times recycle experiments.

  相似文献   


7.
Poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA)‐based brush poly(phosphoamidate)s are successfully synthesized by a combination of ring‐opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP) following either a commutative two‐step procedure or a straightforward one‐pot process using Grubbs ruthenium‐based catalysts for tandem catalysis. Compared with the traditional polymerization method, combining ROMP and ATRP in a one‐pot process allows the preparation of brush copolymers characterized by a relatively moderate molecular weight distribution and quantitative conversion of monomer. Moreover, the surface morphologies and aggregation behaviors of these polymers are studied by AFM and TEM measurements.

  相似文献   


8.
In this work, activated ester chemistry is employed to synthesize biocompatible and readily functionalizable polymersomes. Via aminolysis of pentafluorophenyl methacrylate‐based precursor polymers, an N‐(2‐hydroxypropyl) methacrylamide (HPMA)‐analog hydrophilic block is obtained. The precursor polymers can be versatile functionalized by simple addition of suitable primary amines during aminolysis as demonstrated using a fluorescent dye. Vesicle formation is proven by cryoTEM and light scattering. High encapsulation efficiencies for hydrophilic cargo like siRNA are achieved using dual centrifugation and safe encapsulation is demonstrated by gel electrophoresis. In vitro studies reveal low cytotoxicity and no protein adsorption‐induced aggregation in human blood serum occurs, making the vesicles interesting candidates as nanosized drug carriers.

  相似文献   


9.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


10.
Pillararene‐containing thermoresponsive polymers are synthesized via reversible addition–fragmentation chain transfer polymerization using pillararene derivatives as the effective chain transfer agents for the first time. These polymers can self‐assemble into micelles and form vesicles after guest molecules are added. Furthermore, such functional polymers can be further applied to prepare hybrid gold nanoparticles, which integrate the thermoresponsivity of polymers and molecular recognition of pillararenes.

  相似文献   


11.
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N‐isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium‐based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations. PNIPAM brushes are successfully grafted from the surface of the poly(ionic liquid) nanoparticles via ATRP. The stimuli‐responsive behavior of the poly(ionic liquid) nanoparticles grafted with PNIPAM brushes (NP‐g‐PNIPAM) in aqueous phase is studied in detail. Enhanced colloidal stability of the NP‐g‐PNIPAM brush particles at high ionic strength compared to pure PIL nanoparticles at room temperature is achieved. Above the lower critical solution temperature (LCST) of PNIPAM, the brush particles remain stable, but a decrease in hydrodynamic radius due to the collapse of the PNIPAM brush onto the PIL nanoparticle surface is observed.

  相似文献   


12.
Atom transfer radical polymerization (ATRP) is a versatile and robust tool to synthesize a wide spectrum of monomers with various designable structures. However, it usually needs large amounts of transition metal as the catalyst to mediate the equilibrium between the dormant and propagating species. Unfortunately, the catalyst residue may contaminate or color the resultant polymers, which limits its application, especially in biomedical and electronic materials. How to efficiently and economically remove or reduce the catalyst residue from its products is a challenging and encouraging task. Herein, recent advances in catalyst separation and recycling are highlighted with a focus on (1) highly active ppm level transition metal or metal free catalyzed ATRP; (2) post‐purification method; (3) various soluble, insoluble, immobilized/soluble, and reversible supported catalyst systems; and (4) liquid‐liquid biphasic catalyzed systems, especially thermo‐regulated catalysis systems.

  相似文献   


13.
This paper reports on the synthesis of well‐defined polyacrylamide‐based nanogels via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization, highlighting a templateless route for the efficient synthesis of nanogels based on water‐soluble polymers. RAFT dispersion polymerization of acrylamide in co‐nonsolvents of water–tert‐butanol mixtures by chain extension from poly(dimethylacrylamide) shows well‐controlled polymerization process, uniform nanogel size, and excellent colloidal stability. The versatility of this approach is further demonstrated by introducing a hydrophobic co‐monomer (butyl acrylate) without disturbing the dispersion polymerization process.

  相似文献   


14.
A novel photo‐induced homogeneous atom transfer radical polymerization (ATRP) system is constructed using an organic copper salt (Cu(SC(S)N(C2H5)2)2) as a photo‐induced catalyst at 30 °C. Herein, N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) is used as a ligand, ethyl 2‐bromophenylacetate (EBPA) as an ATRP initiator, and (2,4,6‐trimethylbenzoyl) diphenylphosphine oxide (TPO) as a photo‐induced radical initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP using methyl methacrylate (MMA) as a modal monomer. The effect of the concentration of the organic copper on the polymerization is investigated in detail. It is found that well‐controlled polymerization can be obtained even with the amount of (Cu(SC(S)N(C2H5)2)2 decreasing to a 1.56 ppm level, with the molecular weight of the resultant polymers increasing linearly with monomer conversion while maintaining a narrow molecular weight distribution (/ < 1.3).

  相似文献   


15.
It is well known that the recently developed photoinduced metal‐free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5‐tetrakis(carbazol‐9‐yl)‐4,6‐dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal‐free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α‐bromophenyl‐acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled “on–off” light switching cycle regulation, and chain extension experiment confirm the “living”/controlled features of this promising photoinduced metal‐free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN.

  相似文献   


16.
A novel diblock copolymer consisting of poly(vinylferrocene) (PVFc) and poly(N,N‐diethylacrylamide) (PDEA) is synthesized via a combination of anionic and RAFT polymerization. The use of a novel route to hydroxyl‐end‐functionalized metallopolymers in anionic polymerization and subsequent esterification with a RAFT agent leads to a PVFc macro‐CTA ( = 3800 g mol−1; Đ = 1.17). RAFT polymerization with DEA affords block copolymers as evidenced by 1H NMR spectroscopy as well as size exclusion chromatography (6400 ≤ ≤ 33700 g mol−1; 1.31 ≤ Đ 1.28). Self‐assembly of the amphiphilic block copolymers in aqueous solution leads to micelles as shown via TEM. Importantly, the distinct thermo‐responsive and redox‐responsive character of the blocks is probed via dynamic light scattering and found to be individually and repeatedly addressable.

  相似文献   


17.
This communication reports the first example of precision polyolefin nanoalloys where an exotic immiscible polymer is nanometrically dispersed with stability in a polyolefin matrix in a highly controlled mode. Following the preparation of polypropylene/multiwalled carbon nanotubes nanocomposites (PP/MWCNTs) by in situ Ziegler‐Natta polymerization, the hydroxyl groups on the surfaces of individual MWCNTs are used to initiate ring‐opening polymerization of ε‐caprolactone, resulting in PP/poly(ε‐caprolactone) (PCL) alloy with PCL grafted on MWCNTs. Upon phase formation, the PP/MWCNTs‐g‐PCL alloys exhibit a unique PCL dispersion morphology, which is stable and solely governed by PCL molecular weight.

  相似文献   


18.
A straightforward synthetic procedure for the double modification and polymer–polymer conjugation of telechelic polymers is performed through amine‐thiol‐ene conjugation. Thiolactone end‐functionalized polymers are prepared via two different methods, through controlled radical polymerization of a thiolactone‐containing initiator, or by modification of available end‐functionalized polymers. Next, these different linear polymers are treated with a variety of amine/acrylate‐combinations in a one‐pot procedure, creating a library of tailored end‐functionalized polymers. End group conversions are monitored via SEC, NMR, and MALDI‐TOF analysis, confirming the quantitative modification after each step. Finally, this strategy is applied for the synthesis of block copolymers via polymer–polymer conjugation and the successful outcome is analyzed via LCxSEC measurements.

  相似文献   


19.
A novel route for the synthesis of poly(ethylene glycol)‐b‐polystyrene copolymer, starting from commercially available poly(ethylene glycol) methyl ether and azido terminated polystyrene prepared by atom transfer radical polymerization and subsequent nucleophilic substitution, is applied with simplicity and high efficiency. The combination of photoinduced copper (I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) and ketene chemistry reactions proceeds either simultaneously or sequentially in a one‐pot procedure under near‐visible light irradiation. In both cases, excellent block copolymer formations are achieved, with an average molecular weight of around 7000 g mo1−1 and a polydispersity index of 1.20.

  相似文献   


20.
Recent studies have shown that polymersomes templated by microfluidic double‐emulsion possess several advantages such as high monodispersity and encapsulation efficiency compared with those generated based on thin‐film rehydration and electroformation. Stabilizers, including bovine serum albumin (BSA) and polyvinyl alcohol (PVA), have been used to enhance the formation and stability of double emulsions that are used as templates for the generation of polymersomes. In this work, the effect of stabilizers on the mechanical response of double‐emulsion‐templated polymersomes using micropipette aspiration is investigated. It is demonstrated that the existence of stabilizers results in the inelastic response in poly­mersomes in the early stage of solvent removal. However, aged polymersomes that have little residual solvent show elastic behavior. Polymersomes prepared from PVA‐stabilized double emulsions have noticeably lower area expansion moduli than polymersomes prepared from stabilizer‐free and BSA‐stabilized double emulsions, suggesting that PVA is incorporated in the bilayer membrane of polymersomes.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号