首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stimuli responsiveness in polymer design is providing basis for diversely new and advanced materials that exhibit switchable porosity in membranes and coatings, switchable particle formation and thermodynamically stable nanoparticle dispersions, polymers that provide directed mechanical stress in response to intensive fields, and switchable compatibility of nanomaterials in changing environments. The incorporation of ionic liquid monomers has resulted in many new polymers based on the imidazolium group. These polymers exhibit all of the above‐articulated material properties. Some insight into how these anion responsive polymers function has become empirically available. Much opportunity remains for extending our understanding as well as for designing more refined stimuli‐responsive materials.  相似文献   

2.
Well‐defined figure‐of‐eight‐shaped (8‐shaped) polystyrene (PS) with controlled molecular weight and narrow polydispersities has been prepared by the combination of atom transfer radical polymerization (ATRP) and click chemistry. The synthesis involves two steps: 1) Preparation of a linear tetrafunctional PS with two azido groups, one at each end of the polymer chain, and two acetylene groups at the middle of the chain. 2) Intramolecular cyclization of the linear tetrafunctional PS at a very low concentration by a click reaction to produce the 8‐shaped polystyrenes. The resulting intermediates and the target polymers were characterized by 1H NMR and FT‐IR spectroscopy, and gel permeation chromatography. The glass transition temperatures (Tgs) were determined by differential scanning calorimetry and it was found that the decrease in chain mobility by cyclization resulted in higher Tgs for 8‐shaped polystyrenes as compared to their corresponding precursors.

  相似文献   


3.
4.
5.
A class of cationic bottle‐brush polymers that show ionic strength‐dependent stimuli responsiveness is prepared. Brush polymers with norbornene as backbone and quaternary ammonium (QA)‐containing polycaprolactone copolymers as side chains are synthesized by a combination of ring‐opening metathesis polymerization, ring‐opening polymerization, and click reaction. In water with low ionic strength, brush polymers are soluble due to the strong electrostatic repulsion between cationic QA groups. As the addition of salt to increase ionic strength, single brush polymers undergo a transition from extended conformation to collapsed state and finally become insoluble in solution due to the screening effect of salts that yield the once‐dominant electrostatic interactions among QA species to hydrophobic–hydrophobic interactions.

  相似文献   


6.
Summary: Thiol‐reactive‐functionality decorated multi‐walled carbon nanotubes (MWNTs) have been obtained. Trithiocarbonate‐ended poly(N‐(2‐hydroxypropyl)methacrylamide) (PHPMA) is prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐(2‐hydroxypropyl)methacrylamide (HPMA) using S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate as chain transfer agent, subsequently, thiol‐terminated PHPMA (PHPMA‐SH) is obtained by treating trithiocarbonate‐ended PHPMA with hexylamine. The PHPMA‐S‐S‐MWNT conjugate is formed by simply stirring the mixture of thiol‐reactive‐functionality decorated MWNTs with PHPMA‐SH in phosphate buffered saline by a thiol‐coupling reaction. FT‐IR, HRTEM, 1H NMR, and TGA results show that this thiol‐coupling reaction is effective to produce aqueous soluble polymer–MWNT conjugates under mild conditions.

Thiol‐reactive‐functionality decorated multi‐walled carbon nanotubes are modified with thiol end‐capped polymers by a thiol‐coupling reaction.  相似文献   


7.
New water‐soluble block copolymers of 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA), oligo(ethylene glycol) methacrylate (OEGMA), and N‐(3‐(dimethylamino) propyl) methacrylamide (DMAPMA) (poly(OEGMA‐co‐MEO2MA)‐b‐poly(DMAPMA)) were prepared via sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization. Selective quaternization of poly(DMAPMA) block gives poly(OEGMA‐co‐MEO2MA)‐b‐poly((3‐[N‐(3‐methacrylamidopropyl)‐N,N‐dimethyl]ammoniopropane sulfonate)‐coN‐(3‐(dimethylamino) propyl) methacrylamide), such block copolymer exhibits double thermo‐responsive behavior in water, poly(MEO2MA‐co‐OEGMA) block shows a lower critical solution temperature (LCST), and poly((3‐[N‐(3‐methacrylamidopropyl)‐N,N‐dimethyl]ammoniopropane sulfonate)‐co‐N‐(3‐(dimethylamino) propyl) methacrylamide) block shows a upper critical solution temperature (UCST). Both of LCST and UCST can be controlled: LCST could be tuned by the fraction of OEGMA units in poly(OEGMA‐co‐MEO2MA), and UCST was found to be dependent on the degree of quaternization (DQ).

  相似文献   


8.
A series of novel pH‐ and temperature‐responsive diblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly[(L ‐glutamic acid)‐co‐(γ‐benzyl L ‐glutamate)] [P(GA‐co‐BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA‐co‐BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region. Notably, when the BLG content in P(GA‐co‐BLG) block was more than 30 mol.‐%, the diblock copolymer responded sharply to a narrow pH change in the region of pH 7.4–5.5.

  相似文献   


9.
Herein, the first example of photosensitive cyclic amphiphilic homopolymers consisting of multiple biphenyl azobenzene chromophores in the cyclic main chain tethered with hydrophilic tetraethylene glycol monomethyl ether units is presented. The synthetic approach involves sequentially performed thermal catalyzed “click” step‐growth polymerization in bulk, and Cu(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) intramolecular cyclization from α‐alkyne/ω‐azide linear precursors. It is observed that such amphiphilic macrocycles exhibit increased glass transition temperatures (Tg), slightly faster trans–cis–trans photoisomerization, and enhanced fluorescence emission intensity compared with the corresponding linear polymers. In addition, the cyclic amphiphilic homopolymers self‐assemble into spherical nanoparticles with smaller sizes which possess slower photoresponsive behaviors in a tetrahydrofuran/water mixture compared with those of the linear ones. All these interesting observations suggest that the cyclic topology has a great influence on the physical properties and self‐assembly behavior of these photoresponsive amphiphilic macrocycles in general.

  相似文献   


10.
For most stimuli‐responsive polymer materials (SRPMs), such as polymer gels, micelles, and brushes, the responsive mechanism is based on the solubility or compatibility with liquid media. That basis always results in distorting or collapsing the material's appearance and relies on external liquids. Here, a novel kind of SRPMs is proposed. Unlike most SRPMs, liquid is stored within special domains rather than expelled, so it is deforming‐free and relying on no external liquid, which is referred to as self‐storage SRPMs (SS‐SRPMs). The facile and universal route to fabricate SS‐SRPMs allows for another novel family of SRPMs. Furthermore, it is validated that SS‐SRPMs can drastically respond to outside temperature like switchers, especially for optical and electrochemical responses. Those features hold prospects for applications in functional devices, such as smart optical lenses or anti‐self‐discharge electrolytes for energy devices.

  相似文献   


11.
Two thermally cross‐linkable hole transport polymers that contain phenoxazine and triphenylamine moieties, X‐P1 and X‐P2, are developed for use in solution‐processed multi‐stack organic light‐emitting diodes (OLEDs). Both X‐P1 and X‐P2 exhibit satisfactory cross‐linking and optoelectronic properties. The highest occupied molecular orbital (HOMO) levels of X‐P1 and X‐P2 are −5.24 and −5.16 eV, respectively. Solution‐processed super yellow polymer devices (ITO/X‐P1 or X‐P2/PDY‐132/LiF/Al) with X‐P1 or X‐P2 hole transport layers of various thicknesses are fabricated with the aim of optimizing the device characteristics. The fabricated multi‐stack yellow devices containing the newly synthesized hole transport polymers exhibit satisfactory currents and power efficiencies. The optimized X‐P2 device exhibits a device efficiency that is dramatically improved by more than 66% over that of a reference device without an HTL.

  相似文献   


12.
Poly (N‐isopropylacrylamide) (pNIPAm)‐based hydrogels and hydrogel particles (microgels) have been extensively studied since their discovery and “popularization” a few decades ago. While their uses seem to have no bounds, this Feature Article is focused on their development and application for sensing small molecules, macromolecules, and biomolecules. Hydrogel/microgel‐based photonic materials with order in one, two, or three dimensions are highlighted, which exhibit optical properties that depend on the presence and concentration of various analytes.

  相似文献   


13.
Stimuli‐responsive materials are of immense importance because of their ability to undergo alteration of their properties in response to their environment. The properties of such materials can be tuned by subtle adjustments in temperature, pH, light, and so forth. Among such smart materials, multi‐stimuli‐responsive polymeric materials are of pronounced significance as they offer a wide range of applications and their properties can be tuned through several mechanisms. Here, we aim to highlight some recent studies showcasing the multi‐stimuli‐responsive character of these polymers, which are still relatively little known compared to their single‐stimuli‐responsive counterpart.  相似文献   

14.
With diabetes mellitus becoming an important public health concern, insulin‐delivery systems are attracting increasing interest from both scientific and technological researchers. This feature article covers the present state‐of‐the‐art glucose‐responsive insulin‐delivery system (denoted as GRIDS), based on responsive polymer materials, a promising system for self‐regulated insulin delivery. Three types of GRIDS are discussed, based on different fundamental mechanisms of glucose‐recognition, with: a) glucose enzyme, b) glucose binding protein, and c) synthetic boronic acid as the glucose‐sensitive component. At the end, a personal perspective on the major issues yet to be worked out in future research is provided.  相似文献   

15.
A series of thermo‐responsive PNIPAM copolymers containing different amounts of fulgimide moieties has been synthesized via a polymer analogous reaction of poly(pentafluorophenyl acrylate). All copolymers were designed to exhibit a lower critical solution temperature (LCST) in water, which was only weakly dependent on the amount of incorporated chromophoric fulgimide groups. The copolymers showed a photocyclization of the fulgimide side groups upon irradiation with UV‐light accompanied with a color change. The closed form of the chromophore had a halftime of 136 min for the visible reisomerization and did not affect the LCST of the polymer. This led to the realization of a logic “NOT A” for the fulgimide containing PNIPAM, while a corresponding azobenzene containing PNIPAM resulted in a different logic “A implies B”.

  相似文献   


16.
Kinetic Monte Carlo simulations are performed to investigate the capability of ICAR ATRP for the synthesis of well‐defined poly(isobornyl acrylate‐b‐styrene) block(‐like) copolymers using one‐pot semi‐batch and two‐pot batch procedures. The block copolymer quality is quantified via a block deviation (〈BD〉) value. For 〈BD〉 values lower than 0.30, the quality is defined as good and for well‐chosen polymerization conditions the formation of homopolymer chains upon addition of the second monomer can be suppressed. A better block quality is obtained when isobornyl acrylate is polymerized first. For lower Cu levels a one‐pot semi‐batch procedure allows a much faster ATRP and better control over the polymer properties than a two‐pot batch procedure.

  相似文献   


17.
A new route to synthesize amphiphilic core–shell particles that consist of well‐defined hydrophobic polymer cores and poly(vinylamine) (PVAm) shells has been developed. The PVAm was treated with a small amount of tert‐butyl hydroperoxide to generate free radicals that subsequently initiated both graft‐ and homo‐polymerization of vinyl monomer such as n‐butyl acrylate, methyl methacrylate, and styrene. Stable particles in the range from 100 to 250 nm in diameter with very narrow size distributions (polydispersity index between 1.08 and 1.15) were produced in high yields. TEM images of the particles revealed that they had well‐defined core–shell nanostructures with thick and hairy PVAm shells. The structures of the vinyl monomer and water‐soluble polymer were found to strongly influence the formation of particles and their sizes.

  相似文献   


18.
A series of novel temperature and pH responsive block copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(L ‐lysine) (PLL) were synthesized. The effect of pH and the length of PLL on the lower critical solution temperature (LCST) of PNIPAM, and the self‐assembly of these PLL‐based copolymers induced by temperature and pH changes were investigated by the cloud point method, dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM). These PNIPAM‐b‐PLL copolymers can self‐assemble into micelle‐like aggregates with PNIPAM as the hydrophobic block at acidic pH and high temperatures; and at alkaline pH and low temperatures, they can self‐assemble into particles with PLL as the hydrophobic block. The copolymers may have potential applications in biotechnological and biomedical areas as drug release carriers.

  相似文献   


19.
Organisms exhibit strong environmental adaptability by controllably adjusting their morphologies or fast locomotion; thus providing constant inspiration for scientists to develop artificial actuators that not only have diverse and sophisticated shape‐morphing capabilities, but can also further transfer dynamic and reversible shape deformations into macroscopic motion under the following principles: asymmetric friction, the Marangoni effect, and counteracting forces of the surrounding conditions. Among numerous available materials for fabricating bioinspired artificial actuators, stimuli‐responsive polymers are superior in their flexible features and the ability to change their physicochemical properties dynamically under external stimuli, such as temperature, pH, light, and ionic strength. Herein, different mechanisms, working principles, and applications of stimuli‐responsive polymeric actuators are comprehensively introduced. Furthermore, perspectives on existing challenges and future directions of this field are provided.  相似文献   

20.
The controlled atom transfer radical polymerization of an ionic liquid, 1‐(11‐acryloylundecyl)‐3‐methyl imidazolium bromide (ILBr), from both ends of a telechelic poly(propylene oxide) (PPO) macroinitiator, end‐functionalized with bromoisobutyryloyl is reported. The resulting highly water‐soluble triblock, poly(ILBr‐b‐PO‐b‐ILBr) is multistimuli responsive. This new class of triblocks exhibits classical surface activity in lowering surface tension at the air–water interface and in modifying wetting in waterborne coatings. It also immunizes model colloids against coagulation induced by Debye–Hückel (indifferent electrolyte) electrostatic screening. Further, sol–gel thermoreversibility is unexpectedly found as an additional form of stimuli responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号