首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We uncover that the breaking point of the ‐symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off‐diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at which ‐symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and the statistically averaged width of the output pattern substantially increases. Beyond the symmetry‐breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both broken and unbroken ‐symmetry. Our findings are supported by statistical analysis of parameters of stationary eigenmodes of disordered‐symmetric waveguide arrays and by analysis of dynamical evolution of single‐site excitations in such structures.

  相似文献   


2.
Open‐access microcavities are emerging as a new approach to confine and engineer light at mode volumes down to the λ3 regime. They offer direct access to a highly confined electromagnetic field while maintaining tunability of the system and flexibility for coupling to a range of matter systems. This article presents a study of coupled cavities, for which the substrates are produced using Focused Ion Beam milling. Based on experimental and theoretical investigation the engineering of the coupling between two microcavities with radius of curvature of 6 m is demonstrated. Details are provided by studying the evolution of spectral, spatial and polarisation properties through the transition from isolated to coupled cavities. Normal mode splittings up to 20 meV are observed for total mode volumes around . This work is of importance for future development of lab‐on‐a‐chip sensors and photonic open‐access devices ranging from polariton systems to quantum simulators.

  相似文献   


3.
Nonlinear wave mixing in mesoscopic silicon structures is a fundamental nonlinear process with broad impact and applications. Silicon nanowire waveguides, in particular, have large third‐order Kerr nonlinearity, enabling salient and abundant four‐wave‐mixing dynamics and functionalities. Besides the Kerr effect, in silicon waveguides two‐photon absorption generates high free‐carrier densities, with corresponding fifth‐order nonlinearity in the forms of free‐carrier dispersion and free‐carrier absorption. However, whether these fifth‐order free‐carrier nonlinear effects can lead to six‐wave‐mixing dynamics still remains an open question until now. Here we report the demonstration of free‐carrier‐induced six‐wave mixing in silicon nanowires. Unique features, including inverse detuning dependence of six‐wave‐mixing efficiency and its higher sensitivity to pump power, are originally observed and verified by analytical prediction and numerical modeling. Additionally, asymmetric sideband generation is observed for different laser detunings, resulting from the phase‐sensitive interactions between free‐carrier six‐wave‐mixing and Kerr four‐wave‐mixing dynamics. These discoveries provide a new path for nonlinear multi‐wave interactions in nanoscale platforms.

  相似文献   


4.
We report on the realisation of ultra‐small‐mode‐volume tunable dye lasers based on hemispherical open microcavities. The cavity mode volume is of the order of cubic micrometers, such that self‐diffusion of the dye molecules allows continuous wave operation over several minutes without the need for driven circulation. Such micro lasers could be integrated into lab‐on‐a‐chip devices. A rate‐equation model that incorporates the diffusion mechanism is used to predict the effect of the microcavity parameters on the lasing threshold.

  相似文献   


5.
Due to the broad scattering spectral profiles, localized surface plasmon resonances (LSPRs) of Pd nanoparticles have low resolution and limited sensitivity for hydrogen detection. In this work, we use a simple light‐irradiation method to demonstrate that free‐space light can be efficiently coupled into and from the microfiber whispering‐gallery modes (WGMs) by the Pd nanoantennas. The nanoantenna–microfiber cavity system provides strong intermodal coupling between LSPRs and WGMs, and induces significant modulation of the scattering spectra. A measured full width at half‐maximum of 3.2 nm at 622.7 nm is obtained, which is the narrowest in Pd nanoparticle‐based LSPR structures reported up to now. The ultranarrow resonances offer enhanced sensitivity to hydrogen gas detection with a figure of merit reaching ∼2.22. Other advantages of the Pd nanoantenna–microfiber cavity system including independence of precise alignment of excitation light, large tunability of the resonant wavelengths, easy and low‐cost fabrication of the system, have also been demonstrated.

  相似文献   


6.
About twenty years ago, in the autumn of 1996, the first white light‐emitting diodes (LEDs) were offered for sale. These then‐new devices ushered in a new era in lighting by displacing lower‐efficiency conventional light sources including Edison's venerable incandescent lamp as well as the Hg‐discharge‐based fluorescent lamp. We review the history of the conception, improvement, and commercialization of the white LED. Early models of white LEDs already exceeded the efficiency of low‐wattage incandescent lamps, and extraordinary progress has been made during the last 20 years. The review also includes a discussion of advances in blue LED chips, device architecture, light extraction, and phosphors. Finally, we offer a brief outlook on opportunities provided by smart LED technology.

  相似文献   


7.
Recently, metasurfaces have received increasing attention due to their ability to locally manipulate the amplitude, phase and polarization of light with high spatial resolution. Transmissive metasurfaces based on high‐index dielectric materials are particularly interesting due to the low intrinsic losses and compatibility with standard industrial processes. Here, it is demonstrated numerically and experimentally that a uniform array of silicon nanodisks can exhibit close‐to‐unity transmission at resonance in the visible spectrum. A single‐layer gradient metasurface utilizing this concept is shown to achieve around 45% transmission into the desired order. These values represent an improvement over existing state‐of‐the‐art, and are the result of simultaneous excitation and mutual interference of magnetic and electric‐dipole resonances in the nanodisks, which enables directional forward scattering with a broad bandwidth. Due to CMOS compatibility and the relative ease of fabrication, this approach is promising for creation of novel flat optical devices.

  相似文献   


8.
The ability of generating arbitrary surface plasmon (SP) profiles in a controllable manner is of particular interest in designing plasmonic imaging, lithography and forcing devices. During the past decades, holography has gained enormous interest and achievements in free‐space three‐dimensional displays. Here, by applying a two‐dimensional version of holography, we experimentally demonstrate a generic method to control the SP profiles. Through controlling the orientation angles of two separated slits under circular polarization incidence, the amplitude and phase of the excited SPs can be freely manipulated, which allows direct generation of the desired SP profiles. A series of controllable SP holography schemes are theoretically and experimentally demonstrated, where the holographic SP profiles with high imaging quality can be dynamically modulated by varying the circular polarization handedness or orientation angle of linear polarization. The universality and simplicity of the proposed design strategies would offer promising opportunities for practical plasmonic applications.

  相似文献   


9.
Entangled photon pairs must often be spatially separated for their subsequent manipulation in integrated quantum circuits. Separation that is both deterministic and universal can in principle be achieved through anti‐coalescent two‐photon quantum interference. However, such interference‐facilitated pair separation (IFPS) has not been extensively studied in the integrated setting, which has important implications on performance. This work provides a detailed review of IFPS and examines how integrated device dependencies such as dispersion impact separation fidelity and interference visibility. The analysis applies equally to both on‐chip and in‐fiber implementations. When coupler dispersion is present, the separation performance can depend on photon bandwidth, spectral entanglement and the dispersion. By design, reduction in the separation fidelity due to loss of non‐classical interference can be perfectly compensated for by classical wavelength demultiplexing effects. This work informs the design of devices for universal photon pair separation of states with tunable arbitrary properties.

  相似文献   


10.
The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all‐optical laser‐driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump‐probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators.

  相似文献   


11.
The newly engineered ternary CdZnS/ZnS colloidal quantum dots (CQDs) are found to exhibit remarkably high photoluminescence quantum yield and excellent optical gain properties. However, the underlying mechanisms, which could offer the guidelines for devising CQDs for optimized photonic devices, remain undisclosed. In this work, through comprehensive steady‐state and time‐resolved spectroscopy studies on a series of CdZnS‐based CQDs, we unambiguously clarify that CdZnS‐based CQDs are inherently superior optical gain media in the blue spectral range due to the slow Auger process and that the ultralow threshold stimulated emission is enabled by surface/interface engineering. Furthermore, external cavity‐free high‐Q quasitoroid microlasers were produced from self‐assembly of CdZnS/ZnS CQDs by facile inkjet printing technique. Detailed spectroscopy analysis confirms the whispering gallery mode lasing mechanism of the quasitoroid microlasers. This tempting microlaser fabrication method should be applicable to other solution‐processed gain materials, which could trigger broad research interests.

  相似文献   


12.
We investigate the fractional Schrödinger equation with a periodic ‐symmetric potential. In the inverse space, the problem transfers into a first‐order nonlocal frequency‐delay partial differential equation. We show that at a critical point, the band structure becomes linear and symmetric in the one‐dimensional case, which results in a nondiffracting propagation and conical diffraction of input beams. If only one channel in the periodic potential is excited, adjacent channels become uniformly excited along the propagation direction, which can be used to generate laser beams of high power and narrow width. In the two‐dimensional case, there appears conical diffraction that depends on the competition between the fractional Laplacian operator and the ‐symmetric potential. This investigation may find applications in novel on‐chip optical devices.

  相似文献   


13.
Microresonator‐based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase‐locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve conversion efficiency ( on‐chip comb power excluding the pump) in the fiber telecommunication band with broadband mode‐locked dark‐pulse combs. We present a general analysis on the efficiency which is applicable to any phase‐locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time‐domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  相似文献   


14.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


15.
Dielectric metasurfaces are two‐dimensional structures composed of nano‐scatterers that manipulate the phase and polarization of optical waves with subwavelength spatial resolution, thus enabling ultra‐thin components for free‐space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have fixed parameters. Here, we demonstrate highly tunable dielectric metasurface devices based on subwavelength thick silicon nano‐posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 μm to 1400 μm (over 952 diopters change in optical power) through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50%. The demonstrated tunable metasurface concept is highly versatile for developing ultra‐slim, multi‐functional and tunable optical devices with widespread applications ranging from consumer electronics to medical devices and optical communications.

  相似文献   


16.
A spaser is a nanoplasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and a resonant cavity replaced by a metallic nanostructure supporting localized plasmonic modes. By combining analytical results and first‐principle numerical simulations, we provide a comprehensive study of the ultrafast dynamics of a spaser. Due to its highly‐nonlinear nature, the spaser is characterized by a large number of interacting degrees of freedom, which sustain a rich manifold of different phases we discover, describe and analyze here. In the regime of strong interaction, the system manifests an irreversible ergodic evolution towards the configuration where energy is equally shared among all the available degrees of freedom. Under this condition, the spaser generates ultrafast vortex‐like lasing modes that are spinning on the femtosecond scale and whose direction of rotation is dictated by quantum noise. In this regime, the spaser acquires the character of a nanoparticle with an effective spin. This opens up a range of interesting possibilities for achieving unidirectional emission from a symmetric nanostructure, stimulating a broad range of applications for nanoplasmonic lasers as unidirectional couplers and random information sources.

  相似文献   


17.
We report high‐power frequency conversion of a Yb‐doped fiber laser using a double‐pass pumped external‐cavity diamond Raman oscillator. Pumping with circular polarization is shown to be efficient while facilitating high‐power optical isolation between the pump and Raman laser. We achieved continuous‐wave average power of 154 W with a conversion efficiency of 50.5% limited by backward‐amplified light in the fiber laser. In order to prove further scalability, we achieved a maximum steady‐state Raman‐shifted output of 381 W with 61% conversion efficiency and excellent beam quality using 10 ms pump pulses, approximately a thousand times longer than the transient thermal time‐constant. No power saturation or degradation in beam quality is observed. The results challenge the present understanding of heat deposition in Raman crystals and foreshadow prospects for reduced thermal effects in diamond than originally anticipated. We also report the first experimental evidence for stimulated Brillouin scattering in diamond.

  相似文献   


18.
We report complete spatial shaping (both phase and amplitude) of the second‐harmonic beam generated in a nonlinear photonic crystal. Using a collinear second‐order process in a nonlinear computer generated hologram imprinted on the crystal, the desired beam is generated on‐axis and in the near field. This enables compact and efficient one‐dimensional beam shaping in comparison to previously demonstrated off‐axis Fourier holograms. We experimentally demonstrate the second‐harmonic generation of high‐order Hermite–Gauss, top hats and arbitrary skyline‐shaped beams.

  相似文献   


19.
Recent realization of nontrivial topological phases in photonic systems has provided unprecedented opportunities in steering light flow in novel manners. Based on the Su–Schriffer–Heeger (SSH) model, a topologically protected optical mode was successfully demonstrated in a plasmonic waveguide array with a kinked interface that exhibits a robust nonspreading feature. However, under the same excitation conditions, another antikinked structure seemingly cannot support such a topological interface mode, which appears to be inconsistent with the SSH model. Theoretical calculations are carried out based on the coupled‐mode theory, in which the mode properties, excitation conditions, and the robustness are studied in detail. It is revealed that under the exact eigenstate excitations, both kinked and antikinked structures do support such robust topological interface modes; however, for a realistic single‐waveguide input only the kinked structure does so. It is concluded that the symmetry of interface eigenmodes plays a crucial role, and the odd eigenmode in a kinked structure offers the capacity to excite the nonspreading interface mode in the realistic excitation of a one‐waveguide input. Our finding deepens the understanding of mode excitation and propagation in coupled waveguide systems, and could open a new avenue in optical simulations and photonic designs.

  相似文献   


20.
In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto‐second and atto‐second laser‐induced electrons are emitted from nanotips delivering coherent fast electron sources. Optical control of dispersion of the emitted electron waves, and optically controlled femto‐second switches for ultrafast electron detection are proposed. The first steps towards electron accelerators and matter optics on‐a‐chip are now being taken. New research fields are driven by these new technologies. One example is the optical generation of electron pulses on‐demand and quantum degenerate pulses. Another is the emerging development of interaction free electron microscopy. This review will focus on the field of free electron quantum optics with technologies at the interplay of lasers, electron matter waves, and nanostructures. Questions that motivate their development will also be addressed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号