首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all‐optical laser‐driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump‐probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators.

  相似文献   


2.
Light is usually confined in photonic structures with a band gap or relatively high refractive index for broad scientific and technical applications. Here, a light confinement mechanism is proposed based on the photonic bound state in the continuum (BIC). In a low‐refractive‐index waveguide on a high‐refractive‐index thin membrane, optical dissipation is forbidden because of the destructive interference of various leakage channels. The BIC‐based low‐mode‐area waveguide and high‐Q microresonator can be used to enhance light–matter interaction for laser, nonlinear optical and quantum optical applications. For example, a polymer structure on a diamond membrane shows excellent optical performance that can be achieved with large fabrication tolerance. It can induce strong coupling between photons and the nitrogen–vacancy center in diamond for scalable quantum information processors and networks.

  相似文献   


3.
We report complete spatial shaping (both phase and amplitude) of the second‐harmonic beam generated in a nonlinear photonic crystal. Using a collinear second‐order process in a nonlinear computer generated hologram imprinted on the crystal, the desired beam is generated on‐axis and in the near field. This enables compact and efficient one‐dimensional beam shaping in comparison to previously demonstrated off‐axis Fourier holograms. We experimentally demonstrate the second‐harmonic generation of high‐order Hermite–Gauss, top hats and arbitrary skyline‐shaped beams.

  相似文献   


4.
The integration of microactuators within a silicon photonic chip gave rise to the field of optical micro‐electro‐mechanical systems (MEMS) that was originally driven by the telecommunication market. Following the latter's bubble collapse in the beginning of the third millennium, new directions of research with considerable momentum appeared focusing on the realization and applications of miniaturized instrumentation in biology, chemistry, physics and materials science. At the heart of these applications light interferometry is a key optical phenomenon, in which miniaturized scanning interferometers are the manipulating optical devices. Monolithic free‐space optical interferometers realized on a silicon chip take advantage of the recent progress in the microfabrication technology that is enabling accurate control of the etching depth, the aspect ratio, the verticality and the curvature of the etched surfaces. The fabrication technology, the library of micro‐optical and mechanical components, the realized architectures and their characterization are described in detail in this review, followed by a discussion of the foreseen challenges.

  相似文献   


5.
Open‐access microcavities are emerging as a new approach to confine and engineer light at mode volumes down to the λ3 regime. They offer direct access to a highly confined electromagnetic field while maintaining tunability of the system and flexibility for coupling to a range of matter systems. This article presents a study of coupled cavities, for which the substrates are produced using Focused Ion Beam milling. Based on experimental and theoretical investigation the engineering of the coupling between two microcavities with radius of curvature of 6 m is demonstrated. Details are provided by studying the evolution of spectral, spatial and polarisation properties through the transition from isolated to coupled cavities. Normal mode splittings up to 20 meV are observed for total mode volumes around . This work is of importance for future development of lab‐on‐a‐chip sensors and photonic open‐access devices ranging from polariton systems to quantum simulators.

  相似文献   


6.
One of the challenges of the modern photonics is to develop all‐optical devices enabling increased speed and energy efficiency for transmitting and processing information on an optical chip. It is believed that the recently suggested Parity‐Time (PT) symmetric photonic systems with alternating regions of gain and loss can bring novel functionalities. In such systems, losses are as important as gain and, depending on the structural parameters, gain compensates losses. Generally, PT systems demonstrate nontrivial non‐conservative wave interactions and phase transitions, which can be employed for signal filtering and switching, opening new prospects for active control of light. In this review, we discuss a broad range of problems involving nonlinear PT‐symmetric photonic systems with an intensity‐dependent refractive index. Nonlinearity in such PT symmetric systems provides a basis for many effects such as the formation of localized modes, nonlinearly‐induced PT‐symmetry breaking, and all‐optical switching. Nonlinear PT‐symmetric systems can serve as powerful building blocks for the development of novel photonic devices targeting an active light control.

  相似文献   


7.
We report high‐power frequency conversion of a Yb‐doped fiber laser using a double‐pass pumped external‐cavity diamond Raman oscillator. Pumping with circular polarization is shown to be efficient while facilitating high‐power optical isolation between the pump and Raman laser. We achieved continuous‐wave average power of 154 W with a conversion efficiency of 50.5% limited by backward‐amplified light in the fiber laser. In order to prove further scalability, we achieved a maximum steady‐state Raman‐shifted output of 381 W with 61% conversion efficiency and excellent beam quality using 10 ms pump pulses, approximately a thousand times longer than the transient thermal time‐constant. No power saturation or degradation in beam quality is observed. The results challenge the present understanding of heat deposition in Raman crystals and foreshadow prospects for reduced thermal effects in diamond than originally anticipated. We also report the first experimental evidence for stimulated Brillouin scattering in diamond.

  相似文献   


8.
We uncover that the breaking point of the ‐symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off‐diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at which ‐symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and the statistically averaged width of the output pattern substantially increases. Beyond the symmetry‐breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both broken and unbroken ‐symmetry. Our findings are supported by statistical analysis of parameters of stationary eigenmodes of disordered‐symmetric waveguide arrays and by analysis of dynamical evolution of single‐site excitations in such structures.

  相似文献   


9.
Near‐field optical microscopy techniques provide information on the amplitude and phase of local fields in samples of interest in nanooptics. However, the information on the near field is typically obtained by converting it into propagating far fields where the signal is detected. This is the case, for instance, in polarization‐resolved scattering‐type scanning near‐field optical microscopy (s‐SNOM), where a sharp dielectric tip scatters the local near field off the antenna to the far field. Up to now, basic models have interpreted S‐ and P‐polarized maps obtained in s‐SNOM as directly proportional to the in‐plane ( or ) and out‐of‐plane () near‐field components of the antenna, respectively, at the position of the probing tip. Here, a novel model that includes the multiple‐scattering process of the probing tip and the nanoantenna is developed, with use of the reciprocity theorem of electromagnetism. This novel theoretical framework provides new insights into the interpretation of s‐SNOM near‐field maps: the model reveals that the fields detected by polarization‐resolved interferometric s‐SNOM do not correlate with a single component of the local near field, but rather with a complex combination of the different local near‐field components at each point (, and ). Furthermore, depending on the detection scheme (S‐ or P‐polarization), a different scaling of the scattered fields as a function of the local near‐field enhancement is obtained. The theoretical findings are corroborated by s‐SNOM experiments which map the near field of linear and gap plasmonic antennas. This new interpretation of nanoantenna s‐SNOM maps as a complex‐valued combination of vectorial local near fields is crucial to correctly understand scattering‐type near‐field microscopy measurements as well as to interpret the signals obtained in field‐enhanced spectroscopy.

  相似文献   


10.
Abstract The potential of GaAs‐based photonic crystals for fast all‐optical switching in the telecom spectral range is exploited by controlling the surface recombination and, thereby, the carrier relaxation dynamics. The structure is entirely coated with a layer of aluminium oxide using atomic layer deposition. This results in a carrier lifetime of about 10 ps, as determined by spectrally resolved pump–probe measurements. We show that the nonlinear response of the resonator is optimized when it is excited with a few‐picoseconds pulse. This dynamics is perfectly captured by our model accounting for the carrier diffusion with an impulse response function. Moreover, the suppression of photo‐induced oxidation is revealed to be crucial to demonstrate all‐optical operation at GHz rates with average coupled pump power of 0.5 mW (hence 100 fJ/bit). The switching window is 12 ps wide (1/e), as resolved by homodyne pump–probe measurements. The devices respond to a sequence of closely spaced pump pulses demonstrating a gating window close to 10 ps, with a contrast as high as 7 dB.

  相似文献   


11.
Branched photonic structures have served as paramount important components for nanophotonic integration and circuitry. However, these structures are generally constructed with photonic and plasmonic nanowires, which are nonbiomaterials and often need to be specially engineered to interface with cells and biological system. For bionanophotonics, photonic components assembled with self‐adaptive biomaterials are highly desirable to be directly interfaced with the dynamic biological system. In this work, branched structures for bionanophotonics assembled with natural living biomaterials, i.e., nanorod‐shaped Escherichia coli bacteria are reported. The E. coli cells were orderly trapped using a specially desired tapered optical fiber, forming structures with different branches and lengths. Light‐propagation performances along these branched structures were investigated, and the robustness property of the structures were demonstrated. The results show that the bacteria‐based branched structures provide different promising self‐sustainable and evolvable components, such as multidirectional waveguides and beam splitters, for bionanophotonics by connecting the biological and optical worlds with a seamless interface.

  相似文献   


12.
The newly engineered ternary CdZnS/ZnS colloidal quantum dots (CQDs) are found to exhibit remarkably high photoluminescence quantum yield and excellent optical gain properties. However, the underlying mechanisms, which could offer the guidelines for devising CQDs for optimized photonic devices, remain undisclosed. In this work, through comprehensive steady‐state and time‐resolved spectroscopy studies on a series of CdZnS‐based CQDs, we unambiguously clarify that CdZnS‐based CQDs are inherently superior optical gain media in the blue spectral range due to the slow Auger process and that the ultralow threshold stimulated emission is enabled by surface/interface engineering. Furthermore, external cavity‐free high‐Q quasitoroid microlasers were produced from self‐assembly of CdZnS/ZnS CQDs by facile inkjet printing technique. Detailed spectroscopy analysis confirms the whispering gallery mode lasing mechanism of the quasitoroid microlasers. This tempting microlaser fabrication method should be applicable to other solution‐processed gain materials, which could trigger broad research interests.

  相似文献   


13.
All‐optical ultrafast signal modulation and routing by low‐loss nanodevices is a crucial step towards an ultracompact optical chip with high performance. Here, we propose a specifically designed silicon dimer nanoantenna, which is tunable via photoexcitation of dense electron‐hole plasma with ultrafast relaxation rate. On the basis of this concept, we demonstrate the effect of beam steering by up to 20 degrees through simple variation of the intensity of incident light. The effect, which is suitable for ultrafast light routing in an optical chip, is demonstrated both in the visible and near‐IR spectral regions for silicon‐ and germanium‐based nanoantennas. We also reveal the effect of electron‐hole plasma photoexcitation on the local density of states (LDOS) in the dimer gap and find that the orientation averaged LDOS can be altered by 50%, whereas modification of the projected LDOS can be even more dramatic, almost five‐fold for transverse dipole orientation. Moreover, our analytical model sheds light on the transient dynamics of the studied nonlinear nanoantennas, yielding all temporal characteristics of the suggested ultrafast nanodevice. The proposed concept paves the way to the creation of low‐loss, ultrafast, and compact devices for optical signal modulation and routing.

  相似文献   


14.
Upconversion nanoparticles (UCNPs) have gained increasing attention for their wide applications in bioimaging, displays and photovoltaics. However, low efficiency has been an ongoing challenge for further developments. In this work, it is proposed that the ultrasmall size of UCNPs is essential for achieving large enhancement factors and experimentally demonstrated with 4‐nm UCNPs. A strategy of plasmonic dual resonance is proposed in which two distinct localized surface plasmon resonance (LSPR) peaks of gold nanorods (GNRs) were designed to perfectly match both the excitation and emission light wavelength of UCNPs. Combining the excitation enhancement and Purcell effect, a huge enhancement factor of tens of thousands‐fold is stochastically demonstrated for single UCNPs in solution. The largest overall enhancement region is close to the end of a GNR but not in its central part. The excitation enhancement (up to three orders of magnitude) and the emission enhancement (larger than one order of magnitude) induced by the Purcell effect are experimentally demonstrated separately. This study provides insight into how to achieve a very large upconversion enhancement factor with surface plasmons and will catalyze development of UCNPs’ extensive applications.

  相似文献   


15.
Dynamic charge carriers play a vital role in active photonic quantum/nanodevices, such as electrically pumped semiconductor lasers. Here we present a systematic experimental study of gain‐providing charge‐carrier distribution in a lasing interband cascade laser. The unique charge‐carrier distribution profile in the quantum‐well active region is quantitatively measured at nanometer scales by using a noninvasive scanning voltage microscopy technique. Experimental results clearly confirm the accumulation and spatial segregation of holes and electrons in the beating heart of the device. The measurement also shows that the charge‐carrier density is essentially clamped in the presence of stimulated emission at low temperatures. The threshold charge‐carrier density exhibits a linear but fairly weak temperature dependence, in contrast to the exponential temperature dependence of the threshold current. The experimental approach will lead to a deeper understanding of fundamental processes that govern the operation and performance of nanoelectronic devices, quantum devices and optoelectronic devices.

  相似文献   


16.
Plasmonic waveguides are promising in many applications because of their subwavelength field confinement, which can strongly enhance light‐matter interactions. Nevertheless, how to efficiently evaluate their Kerr nonlinear performance is still an open question because of the presence of relatively large linear losses. Here a simple and versatile figure of merit (FOM) is proposed for Kerr nonlinear waveguides with linear losses. To derive the FOM, a generalized full‐vectorial nonlinear Schrödinger equation governing nonlinear pulse propagation in a lossy waveguide is developed, and an approximate analytic solution of the degenerate four wave mixing conversion efficiency is derived and validated. The effectiveness of the FOM is verified with an all‐plasmonic and a hybrid‐plasmonic waveguide configuration. Rigorous results show that the optimal waveguide length for the highest conversion efficiency is ln 3 times the attenuation length. At this length, the upper limits of the conversion efficiency and the nonlinear phase shift are determined by the FOM. These results provide fundamental theory and useful guidance in exploring plasmonic waveguides for nonlinear optical applications.

  相似文献   


17.
An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high‐intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high‐intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high‐contrast front‐end design are derived regarding the necessary contrast improvement and the amplified “clean” output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high‐intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.

  相似文献   


18.
In recent years, optical vortex beams possessing orbital angular momentum have received much attention due to their potential for high‐capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provide infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate requires complicated 3D fabrication, the emerging field of metasurfaces has provided a planar and facile solution for generating vortex beams of arbitrary orbit angular momentum. Among various types of metasurfaces, the geometric phase metasurface has shown great potential for robust control of light‐ and spin‐controlled wave propagation. Here, we realize a novel type of geometric metasurface fork grating that seamlessly combine the functionality of a metasurface phase plate for vortex‐beam generation, and that of a linear phase gradient metasurface for controlling the wave‐propagation direction. The metasurface fork grating is therefore capable of simultaneously controlling both the spin and the orbital angular momentum of light.

  相似文献   


19.
Quantitative phase imaging (QPI), a method that precisely recovers the wavefront of an electromagnetic field scattered by a transparent, weakly scattering object, is a rapidly growing field of study. By solving the inverse scattering problem, the structure of the scattering object can be reconstructed from QPI data. In the past decade, 3D optical tomographic reconstruction methods based on QPI techniques to solve inverse scattering problems have made significant progress. In this review, we highlight a number of these advances and developments. In particular, we cover in depth Fourier transform light scattering (FTLS), optical diffraction tomography (ODT), and white‐light diffraction tomography (WDT).

  相似文献   


20.
Detecting the optical vortices of darkness hidden in an ultra‐weak background is a difficult task. Here we report an experiment demonstrating that the optical vortices can be directly visualized and identified with a smaller number of photons. Our method is based on the extension of the spiral phase contrast technique to incorporate vortex phase plates (VPP) of high‐order topological charges. In our experiment, we prepare optical vortex arrays of interesting structures such as Arabic numerals and the wings carrying various topological charges. By placing various VPP filters in the Fourier plane of a 4f imaging system, the embedded vortices of an incident ultra‐weak light field can be visualized, revealing both their positions and topological charges. It is found that a higher order vortex generally requires a smaller number of photons to be detected. Our method may find potential application in the fields of astronomical optics and biosensing in an ultra‐weak light environment.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号