首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report on the concept and the design principle of ultrafast Raman loss spectroscopy (URLS) as a structure‐elucidating tool. URLS is an analogue of stimulated Raman scattering (SRS) but more sensitive than SRS with better signal‐to‐noise ratio. It involves the interaction of two laser sources, namely, a picosecond (ps) Raman pump pulse and a white‐light (WL) continuum, with a sample, leading to the generation of loss signals on the higher energy (blue) side with respect to the wavelength of the Raman pump unlike the gain signal observed on the lower energy (red) side in SRS. These loss signals are at least 1.5 times more intense than the SRS signals. An experimental study providing an insight into the origin of this extra intensity in URLS as compared to SRS is reported. Furthermore, the very requirement of the experimental protocol for the signal detection to be on the higher energy side by design eliminates the interference from fluorescence, which appears on the red side. Unlike CARS, URLS signals are not precluded by the non‐resonant background and, being a self‐phase‐matched process, URLS is experimentally easier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Stimulated Raman scattering (SRS) scanning microscopy has the potential to enable label‐free in vivo imaging for research and clinical medicine. Volume SRS from focus occurs in the forward scattered direction. Therefore, multiple scattering events are required to direct the light out of the tissue, reducing imaging depth and resolution. Here, a method called Stokes interference SRS (SISRS) is introduced that operates by the addition to the standard pump and stimulated emission probe beams a third beam called the donut beam. The donut is close in wavelength to the probe beam and, after passage through a π phase plate, forms an annular beam in the focal plane with bright nodes above and below focus. The donut beats with the probe beam, and when they destructively interfere with each other, the microscope's 3‐D stimulated emission focal spot is reduced to subwavelength dimensions. A subwavelength focal volume emits a dipole pattern of SRS with forward and backscatter lobes, enabling high‐resolution single‐backscatter imaging from deep within tissues. The reduction of the focal volume also increases the resolution of the scanning image creating imaging beyond the diffraction limit. SISRS imaging may provide in vivo label‐free Raman images comparable with that achieved in stained in vitro tissues in all planes of section. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Raman spectroscopy can identify cancerous from healthy tissue, with a chemical analysis from the measurement of vibrational bond frequencies. However, to detect small tumors a form of Raman imaging is required. Such imaging—by acquiring a Raman spectrum at each imaging pixel—can detect tumors but is rather slow. Multiphoton versions of Raman—anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy—offer similar accuracies in identifying cancerous tissue and tumor margins but with a far higher speed, which is beneficial for diagnosis of small tumors in tissue. SRS microscopy can also be used to image extrinsic molecules in living cells, such as anti-cancer drugs at typical concentrations.  相似文献   

4.
The ability of normal Raman and surface‐enhanced Raman scattering (SERS) to identify and detect bacteria has shown great success in recent studies. The addition of silver nanoparticles to bacterial samples not only results in an enhanced Raman signal, but it also suppresses the native fluorescence associated with biological material. In this report, Raman chemical imaging (RCI) was used to analyze individual bacteria and complex mixtures of spores and vegetative cells. RCI uses every pixel or a binned pixel group (BPG) of the Raman camera as an independent Raman spectrograph, allowing collection of spatially resolved Raman spectra. The advantage of this technique resides primarily in the analysis of samples in complex backgrounds without the need for physically isolating or purifying the sample. Using a chemical imaging Raman microscope, we compare normal RCI to SERS‐assisted chemical imaging of mixtures of bacteria. In both cases, we are able to differentiate single bacterium in the Raman microscope's field of view, with a 60‐fold reduction in image acquisition time and a factor of 10 increase in the signal‐to‐noise ratio for SERS chemical imaging over normal RCI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The solid phase Fourier transform infrared (FTIR) and Fourier transform (FT) Raman spectral analysis of 7‐chloro‐3‐methyl‐2H‐1,2,4‐benzothiadiazine 1,1‐dioxide (diazoxide), an antihypertensive agent was carried out along with density functional computations. The optimized geometry, wavenumber and intensity of the vibrational bands of diazoxide were obtained by DFT‐B3LYP level of theory with complete relaxation in the potential energy surface using 6‐31G(d,p) basis set. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The harmonic vibrational wavenumbers calculated have been compared with experimental FTIR and FT Raman spectra. The observed and the calculated wavenumbers are found to be in good agreement. The experimental spectra coincide satisfactorily with those of calculated spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We report significant improvements in both signal sensitivity and imaging speed of Fourier transform spectral interferometry coherent anti‐Stokes Raman scattering (FTSI‐CARS) microscopy. With a help of an apodization function in the signal retrieval process, background due to the spectral change of nonresonant signals is eliminated. We experimentally verify that the sensitivity of the improved method is nearly shot‐noise‐limited. The current maximum detection sensitivity is ∼10 mM of aqueous sulfate ions, which correspond to ∼106 oscillators in the microscopy focal volume. Operating the charge‐coupled device (CCD) in the crop mode increases the image acquisition speed by more than ten times. A vibrational hyperspectral image of a polymer sample with 100 × 100 pixel can be obtained within 3 s. With the improved sensitivity and speed, we also perform three‐dimensional volume imaging. Superior chemical selectivity is demonstrated with a mixture of two different oil droplets, which have identical vibrational peak positions but different relative peak ratios. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The discovery of a novel phase‐locked frequency comb generated from a monolithic laser with the concurrent processes of self‐mode locking (SML) and stimulated Raman scattering (SRS) is reported. It is experimentally shown that the width of the Raman gain can be exploited to considerably expand the frequency comb of a monolithic SML crystal laser via the SRS process. At a pump power of 6.5 W, an output power of 140 mW in the Stokes wave with a pulse width as narrow as 2.9 ps at a pulse repetition rate of 6.615 GHz is obtained. The present finding not only provides useful insights into the monolithic intracavity SRS process but also paves the way for generating mode‐locked pulses based on monolithic self‐Raman crystals.  相似文献   

8.
We present time‐lapse Raman imaging (TLRI) of living cells as a new approach in label‐free chemical imaging through non‐electronic resonant, spontaneous Raman microspectroscopy. Raman hyperspectral datacubes of individual live peripheral blood lymphocytes were successively acquired. The Raman imaging time per voxel, with a volume of 0.3 fl, was 100 ms and the total image time of a 32 × 32 pixels image was less than 2 min. Multiple images of an individual cell have been obtained. A full series of TLRI images typically resulted in more than 1.6 million data points per image. We analyzed the datasets using hierarchical cluster analysis. A fingerprint of molecular changes was observed before the cell was blebbing. The molecular fingerprint was related to a gradual disappearance of the Raman signal from carotenoids. Concomitant changes occurred in the C H stretch high wavenumber region, presumably due to a change in the protein and lipid environment of carotenoids. These changes were smaller than 5% of the total signal at 2937 cm−1. We hypothesize that the lipid environment of the carotenoids changes as a result of the photophysics in the carotenoid molecules. The detectability of carotenoids was shown to be 2.3 µMper voxel, which corresponds to 415 molecules. TLRI enables high‐speed chemical imaging not only in the intense high wavenumber region of the Raman spectrum, but particularly in the more informative fingerprint region between 500 and 1800 cm−1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy is an important technique for spectroscopy and chemically selective microscopy, but wider implementation requires dedicated versatile tunable sources. We describe an optical parametric oscillator (OPO) based on a magnesium oxide‐doped periodically poled lithium niobate crystal, with a novel variable output coupler, used as a tunable coherent light source. The OPO's signal wavelength ranges from 880 to 1040 nm and its idler wavelength from 1090 to 1350 nm. We use this OPO to demonstrate high‐resolution narrowband CARS spectroscopy on bulk polystyrene from 900 to 3600 cm−1, covering a large part of the molecular fingerprint region. Recording vibrational spectra using narrowband CARS spectroscopy has several advantages over spontaneous Raman spectroscopy, which we discuss. We isolate the resonant part of the CARS spectrum and compare it to the spontaneous Raman spectrum of polystyrene using the maximum entropy method of phase retrieval; we find them to be in extremely good agreement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Coherent anti-Stokes Raman scattering (CARS) processes are "coherent," but the phase of the anti-Stokes radiation is lost by most incoherent spectroscopic CARS measurements. We propose a Raman microscopy imaging method called nonlinear interferometric vibrational imaging, which measures Raman spectra by obtaining the temporal anti-Stokes signal through nonlinear interferometry. With a more complete knowledge of the anti-Stokes signal, we show through simulations that a high-resolution Raman spectrum can be obtained of a molecule in a single pulse using broad band radiation. This could be useful for identifying the three-dimensional spatial distribution of molecular species in tissue.  相似文献   

11.
This paper deals with a new form of nonlinear Raman spectroscopy called ‘ultrafast Raman loss spectroscopy (URLS)’. URLS is analogous to stimulated Raman spectroscopy (SRS) but is much more sensitive than SRS. The signals are background (noise) free unlike in coherent anti‐Stokes Raman spectroscopy (CARS) and it provides natural fluorescence rejection, which is a major problem in Raman spectroscopy. In addition, being a self‐phase matching process, the URLS experiment is much easier than CARS, which requires specific phase matching of the laser pulses. URLS is expected to be alternative if not competitive to CARS microscopy, which has become a popular technique in applications to materials, biology and medicine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Fourier transform infrared (FT‐IR) and Fourier transform (FT) Raman spectra of 3‐{[(2‐hydroxyphenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using HF/6‐31G* and 6‐311G* basis sets and compared with experimental data. The assignments of the normal modes are done by potential energy distribution (PED)calculations. The prepared compound was identified by nuclear magnetic resonance (NMR) and mass spectra. Optimized geometrical parameters of the title compound are in agreement with reported structures. Shortening of CN bond lengths reveal the effect of resonance. The simultaneous IR and Raman activations of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability, infrared intensities and Raman activities are reported. The phenyl C C stretching modes are equally active as strong bands in both IR and Raman spectra, which are responsible for hyperpolarizability enhancement leading to nonlinear optical activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
We have synthesized 4‐[N‐phenyl‐N‐(3‐methylphenyl)‐amino]‐benzoic acid (4‐[PBA]) and investigated its molecular vibrations by infrared and Raman spectroscopies as well as by calculations based on the density functional theory (DFT) approach. The Fourier transform (FT) Raman, dispersive Raman and FT‐IR spectra of 4‐[PBA] were recorded in the solid phase. We analyzed the optimized geometric structure and energies of 4‐[PBA] in the ground state. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital analysis. The results show that change in electron density in the σ* and π* antibonding orbitals and E2 energies confirm the occurrence of intramolecular charge transfer within the molecule. Theoretical calculations were performed at the DFT level using the Gaussian 09 program. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compound, which show agreement with the observed spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The technique of femtosecond time‐resolved coherent anti‐Stokes scattering (fs‐CARS) is used to investigate the strongly perturbed ν1 ro‐vibrational Raman band of formaldehyde (H2CO). The time‐dependent signal is simulated using a ‘Watson‐’Hamiltonian in A‐type reduction and Raman theory for asymmetric rotors. The results are compared with the experimental data. The fs‐CARS method measures the evolution of the polarization in a molecular ensemble via superposition of many states and is sensitive to spectral irregularities or line shifts of the involved transitions. ‘Coriolis’ interactions play a major role in the analysis of the ν1 band of formaldehyde. We successfully simulate the fs‐CARS transient signal from the ν1 band of formaldehyde including a model for multiple ‘Coriolis’ interactions, without the necessity of describing the complete interaction between all the vibrational levels. ‘Coriolis’ coupling coefficients and energy shifts are derived from the experiment by a least‐square fit. The results are discussed and compared to literature values. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Raman spectra of 3CHBT in unoriented form were recorded at 14 different temperature measurements in the range 25–55 °C, which covers the crystal → nematic (N) phase transition, and the Raman signatures of the phase transition were identified. The wavenumber shifts and linewidth changes of Raman marker bands with varying temperature were determined. The assignments of important vibrational modes of 3CHBT were also made using the experimentally observed Raman and infrared spectra, calculated wavenumbers, and potential energy distribution. The DFT calculations using the B3LYP method employing 6‐31G functional were performed for geometry optimization and vibrational spectra of monomer and dimer of 3CHBT. The analysis of the vibrational bands, especially the variation of their peak position as a function of temperature in two different spectral regions, 1150–1275 cm−1 and 1950–2300 cm−1, is discussed in detail. Both the linewidth and peak position of the ( C H ) in‐plane bending and ν(NCS) modes, which give Raman signatures of the crystal → N phase transition, are discussed in detail. The molecular dynamics of this transition has also been discussed. We propose the co‐existence of two types of dimers, one in parallel and the other in antiparallel arrangement, while going to the nematic phase. The structure of the nematic phase in bulk has also been proposed in terms of these dimers. The red shift of the ν(NCS) band and blue shift of almost all other ring modes show increased intermolecular interaction between the aromatic rings and decreased intermolecular interaction between two  NCS groups in the nematic phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Precise polarized Raman measurements of 2‐chloropyridine (2Clpy) in the region 560–1060 cm−1 and 3‐chloropyridine (3Clpy) in the region 680–1080 cm−1 at different concentrations in mole fraction of methanol were made to calculate the isotropic part of the Raman spectra, which has contributions only from vibrational dephasing. A detailed analysis of the Raman spectra was carried out to see the variation of peak position and linewidth. The dephasing is mode specific. The trigonal bending mode of 3Clpy has two components when it is mixed with methanol. The relative intensities of these two bands are used to calculate the equilibrium constants. The ring‐breathing mode of 3Clpy, on the other hand, remains single in the mixture. The appearance of a new band corresponding to the trigonal bending mode, as well as the nonappearance of that of the ring‐breathing mode, is also shown by the density functional theory (DFT) study of gas phase and methanol‐solvated complexes. The vibrational dephasing time for the hydrogen‐bonded ring‐breathing mode is calculated from the linear Raman linewidth and peak position data. For other modes, it was not possible to calculate the dephasing time because of the nonavailability of a suitable theoretical model. Contrary to 3Clpy, in 2Clpy the ring‐breathing mode becomes a doublet but the trigonal bending mode remains single. It is seen that the hydrogen‐bonding capacity of chloropyridines is highly influenced by the position of the Cl atom. Single and double components of these modes are also explained by DFT calculations. We obtained excellent match of the experimental and theoretical spectra with the B3LYP/6‐31 + G (d,p) method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In single crystals of orthorhombic YAlO3, widely known as a host‐matrix for Ln3+‐lasant ions, many‐phonon stimulated Raman scattering interactions as well as different manifestations of cascaded and cross‐cascaded nonlinear χ(3)↔χ(3) processes are initiated by picosecond laser pulses. The scientific and applicative potential of YAlO3 crystals is considerably expanded by the demonstration of its SRS properties. In particular, the studies revealed the manifestation of eight χ(3)‐active vibrational modes. The corresponding Stokes and anti‐Stokes lines have been assigned and the steady‐state Raman gain coefficients related to the strongest phonon mode have been estimated. In addition, a short review presents the stimulated emission channels of its Ln3+‐ions together with some χ(3)‐nonlinear laser properties of crystals belonging to the binary Y2O3‐Al2O3 system.  相似文献   

19.
刘占军  朱少平  曹莉华  郑春阳 《物理学报》2007,56(12):7084-7089
应用一维Vlasov和Maxwell耦合程序详细研究了激光等离子体相互作用中的基本问题——受激拉曼散射(SRS). 通过研究发现, SRS的产生与电子速度分布函数在相空间中的结构密切相关, 当电子速度分布函数形成相空间涡旋时,背向SRS光大幅增加,而当电子等离子体波相速度附近的电子速度分布函数曲线变平坦后, 背向SRS光基本停止发生. 在模拟中观测到了SRS的爆发、电子速度分布函数形成相空间涡旋、电子俘获等清晰的物理图像. 关键词: Vlasov-Maxwell模拟 受激拉曼散射  相似文献   

20.
Ethyl carbamate (EC), a potentially toxic compound, is found in alcoholic beverages and fermented foodstuff. A combined experimental and theoretical study of Raman on EC is reported in this work for the first time. The Raman bands observed for EC in solid phase are characteristic for the carbonyl group, C―C, C―H and N―H stretching and deformation vibrations. These spectral features coupled with a pKa study allowed establishing the neutral species of EC present in the aqueous solutions experimentally tested at different concentrations. In addition, by performing a density functional theory study in the gas phase, the calculated geometry, the harmonic vibrational modes, and the Raman scattering activities of EC were found to be in good agreement with our experimental data and helped establish the surface‐enhanced Raman scattering (SERS) behavior and EC adsorption geometry on the silver surfaces. The Raman peak at 1006 cm−1, assigned to the υs(CC) + ω(CH) modes, the strongest and best reproducible peak in the SERS spectra, was used for a quantitative evaluation of EC. The limit of detection, which corresponds to a signal‐to‐noise ratio equal to 3, was found to be 2 × 10−7 M (17.8 µg l−1). SERS spectra obtained by using hydroxylamine hydrochloride‐reduced silver nanoparticles provide a fast and reproducible qualitative and quantitative determination of EC in aqueous solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号