首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A novel approach to facilitate excitation and readout processes of isolated negatively charged nitrogen‐vacancy (NV) centers is proposed. The approach is based on the concept of all‐dielectric nanoantennas. It is shown that the all‐dielectric nanoantenna can significantly enhance both the emission rate and emission extraction efficiency of a photoluminescence signal from a single NV center in a diamond nanoparticle on a dielectric substrate. The proposed approach provides high directivity, large Purcell factor, and efficient beam steering, thus allowing an efficient far‐field initialization and readout of several NV centers separated by subwavelength distances.

  相似文献   


2.
All‐optical signal processing on nonlinear photonic chips is a burgeoning field. These processes include light generation, optical regeneration and pulse metrology. Nonlinear photonic chips offer the benefits of small footprints, significantly larger nonlinear parameters and flexibility in generating dispersion. The nonlinear compression of optical pulses relies on a delicate balance of a material's nonlinearity and optical dispersion. Recent developments in dispersion engineering on a chip are proving to be key enablers of high‐efficiency integrated optical pulse compression. We review the recent advances made in optical pulse compression based on nonlinear photonic chips, as well as the future outlook and challenges that remain to be solved.

  相似文献   


3.
Tailoring of electromagnetic spontaneous emission predicted by E. M. Purcell more than 50 years ago has undoubtedly proven to be one of the most important effects in the rich areas of quantum optics and nanophotonics. Although during the past decades the research in this field has been focused on electric dipole emission, the recent progress in nanofabrication and study of magnetic quantum emitters, such as rare‐earth ions, has stimulated the investigation of the magnetic side of spontaneous emission. Here, we review the state‐of‐the‐art advances in the field of spontaneous emission enhancement of magnetic dipole quantum emitters with the use of various nanophotonics systems. We provide the general theory describing the Purcell effect of magnetic emitters, overview realizations of specific nanophotonics structures allowing for the enhanced magnetic dipole spontaneous emission, and give an outlook on the challenges in this field, which remain open to future research.

  相似文献   


4.
The coupling of atomic and photonic resonances serves as an important tool for enhancing light‐matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic‐cladding wave guides, the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator is experimentally demonstrated. Specifically, cavity‐atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances is observed. Moreover, significant enhancement of the efficiency of all optical switching in the V‐type pump‐probe scheme is demonstrated. The coupled system of micro‐ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, dispersion engineering (e.g. slow and fast light) and metrology, as well as for the observation of important effects such as strong coupling, and Purcell enhancement.

  相似文献   


5.
In recent years, optical vortex beams possessing orbital angular momentum have received much attention due to their potential for high‐capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provide infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate requires complicated 3D fabrication, the emerging field of metasurfaces has provided a planar and facile solution for generating vortex beams of arbitrary orbit angular momentum. Among various types of metasurfaces, the geometric phase metasurface has shown great potential for robust control of light‐ and spin‐controlled wave propagation. Here, we realize a novel type of geometric metasurface fork grating that seamlessly combine the functionality of a metasurface phase plate for vortex‐beam generation, and that of a linear phase gradient metasurface for controlling the wave‐propagation direction. The metasurface fork grating is therefore capable of simultaneously controlling both the spin and the orbital angular momentum of light.

  相似文献   


6.
Branched photonic structures have served as paramount important components for nanophotonic integration and circuitry. However, these structures are generally constructed with photonic and plasmonic nanowires, which are nonbiomaterials and often need to be specially engineered to interface with cells and biological system. For bionanophotonics, photonic components assembled with self‐adaptive biomaterials are highly desirable to be directly interfaced with the dynamic biological system. In this work, branched structures for bionanophotonics assembled with natural living biomaterials, i.e., nanorod‐shaped Escherichia coli bacteria are reported. The E. coli cells were orderly trapped using a specially desired tapered optical fiber, forming structures with different branches and lengths. Light‐propagation performances along these branched structures were investigated, and the robustness property of the structures were demonstrated. The results show that the bacteria‐based branched structures provide different promising self‐sustainable and evolvable components, such as multidirectional waveguides and beam splitters, for bionanophotonics by connecting the biological and optical worlds with a seamless interface.

  相似文献   


7.
The recent progress in integrated quantum optics has set the stage for the development of an integrated platform for quantum information processing with photons, with potential applications in quantum simulation. Among the different material platforms being investigated, direct‐bandgap semiconductors and particularly gallium arsenide (GaAs) offer the widest range of functionalities, including single‐ and entangled‐photon generation by radiative recombination, low‐loss routing, electro‐optic modulation and single‐photon detection. This paper reviews the recent progress in the development of the key building blocks for GaAs quantum photonics and the perspectives for their full integration in a fully‐functional and densely integrated quantum photonic circuit.

  相似文献   


8.
Due to the broad scattering spectral profiles, localized surface plasmon resonances (LSPRs) of Pd nanoparticles have low resolution and limited sensitivity for hydrogen detection. In this work, we use a simple light‐irradiation method to demonstrate that free‐space light can be efficiently coupled into and from the microfiber whispering‐gallery modes (WGMs) by the Pd nanoantennas. The nanoantenna–microfiber cavity system provides strong intermodal coupling between LSPRs and WGMs, and induces significant modulation of the scattering spectra. A measured full width at half‐maximum of 3.2 nm at 622.7 nm is obtained, which is the narrowest in Pd nanoparticle‐based LSPR structures reported up to now. The ultranarrow resonances offer enhanced sensitivity to hydrogen gas detection with a figure of merit reaching ∼2.22. Other advantages of the Pd nanoantenna–microfiber cavity system including independence of precise alignment of excitation light, large tunability of the resonant wavelengths, easy and low‐cost fabrication of the system, have also been demonstrated.

  相似文献   


9.
Entangled photon pairs must often be spatially separated for their subsequent manipulation in integrated quantum circuits. Separation that is both deterministic and universal can in principle be achieved through anti‐coalescent two‐photon quantum interference. However, such interference‐facilitated pair separation (IFPS) has not been extensively studied in the integrated setting, which has important implications on performance. This work provides a detailed review of IFPS and examines how integrated device dependencies such as dispersion impact separation fidelity and interference visibility. The analysis applies equally to both on‐chip and in‐fiber implementations. When coupler dispersion is present, the separation performance can depend on photon bandwidth, spectral entanglement and the dispersion. By design, reduction in the separation fidelity due to loss of non‐classical interference can be perfectly compensated for by classical wavelength demultiplexing effects. This work informs the design of devices for universal photon pair separation of states with tunable arbitrary properties.

  相似文献   


10.
One of the challenges of the modern photonics is to develop all‐optical devices enabling increased speed and energy efficiency for transmitting and processing information on an optical chip. It is believed that the recently suggested Parity‐Time (PT) symmetric photonic systems with alternating regions of gain and loss can bring novel functionalities. In such systems, losses are as important as gain and, depending on the structural parameters, gain compensates losses. Generally, PT systems demonstrate nontrivial non‐conservative wave interactions and phase transitions, which can be employed for signal filtering and switching, opening new prospects for active control of light. In this review, we discuss a broad range of problems involving nonlinear PT‐symmetric photonic systems with an intensity‐dependent refractive index. Nonlinearity in such PT symmetric systems provides a basis for many effects such as the formation of localized modes, nonlinearly‐induced PT‐symmetry breaking, and all‐optical switching. Nonlinear PT‐symmetric systems can serve as powerful building blocks for the development of novel photonic devices targeting an active light control.

  相似文献   


11.
The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all‐optical laser‐driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump‐probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators.

  相似文献   


12.
Directional side scattering of light by individual gold nanoparticles (AuNPs) trimers assembled by the atomic force microscope (AFM) nanomanipulation method is investigated in experiment and theory. The AFM nanomanipulation approach brings an active way to construct ultracompact and effective optical nanoantennas. Different configurations of the trimers are constructed in situ via AFM nanomanipulation. Unidirectional side scattering of light by a single trimer is demonstrated with a broad response bandwidth over 400 nm and directivity up to ∼7.8 dB in experiments. The near‐field plasmon coupling of the AuNPs is simulated with the 3D finite‐difference time‐domain method and the far‐field radiation patterns are calculated by employing near‐field‐to‐far‐field transformation methods. The calculated results are in agreement with the experiments qualitatively. The physical origin is revealed intuitively by employing a simple phenomenological “two‐dipole” model. The unidirectional light scattering is due to the interference between multiple plasmonic resonance modes of the trimers. The study contributes to the understanding of the optical response of complex nanostructures and optimizing nanoantenna performances for practical applications, e.g. increasing the detection efficiency of surface‐enhanced spectroscopy.

  相似文献   


13.
Rectangular arrays of pyramidal recesses coated by silver film are investigated by means of polarization‐resolved nonlinear microscopy at 900 nm fundamental wavelength, demonstrating strong dependence of the dipole‐allowed SHG upon the lattice parameters. The plasmonic band gap causes nearly complete SHG suppression in arrays of 650 nm periodicity, whereas a sharp resonance at 550 nm periodicity is observed due to excitation of band edge Bloch states at fundamental frequency, accompanied by symmetry‐constrained interactions with similar modes at the second‐harmonic frequency. Additionally, coupling with modes at the bottom side of the silver film may lead to extraordinary optical transmission, opening a channel for SHG from the highly nonlinear GaAs substrate. Changing the lattice geometry enables SHG intensity modulation over three orders of magnitude, while the effective nonlinear anisotropy can be continuously switched between the two lattice directions, reaching values as high as ±0.96.

  相似文献   


14.
Recent realization of nontrivial topological phases in photonic systems has provided unprecedented opportunities in steering light flow in novel manners. Based on the Su–Schriffer–Heeger (SSH) model, a topologically protected optical mode was successfully demonstrated in a plasmonic waveguide array with a kinked interface that exhibits a robust nonspreading feature. However, under the same excitation conditions, another antikinked structure seemingly cannot support such a topological interface mode, which appears to be inconsistent with the SSH model. Theoretical calculations are carried out based on the coupled‐mode theory, in which the mode properties, excitation conditions, and the robustness are studied in detail. It is revealed that under the exact eigenstate excitations, both kinked and antikinked structures do support such robust topological interface modes; however, for a realistic single‐waveguide input only the kinked structure does so. It is concluded that the symmetry of interface eigenmodes plays a crucial role, and the odd eigenmode in a kinked structure offers the capacity to excite the nonspreading interface mode in the realistic excitation of a one‐waveguide input. Our finding deepens the understanding of mode excitation and propagation in coupled waveguide systems, and could open a new avenue in optical simulations and photonic designs.

  相似文献   


15.
About twenty years ago, in the autumn of 1996, the first white light‐emitting diodes (LEDs) were offered for sale. These then‐new devices ushered in a new era in lighting by displacing lower‐efficiency conventional light sources including Edison's venerable incandescent lamp as well as the Hg‐discharge‐based fluorescent lamp. We review the history of the conception, improvement, and commercialization of the white LED. Early models of white LEDs already exceeded the efficiency of low‐wattage incandescent lamps, and extraordinary progress has been made during the last 20 years. The review also includes a discussion of advances in blue LED chips, device architecture, light extraction, and phosphors. Finally, we offer a brief outlook on opportunities provided by smart LED technology.

  相似文献   


16.
A very promising recent trend in applied quantum physics is to combine the advantageous features of different quantum systems into what is called “hybrid quantum technology”. One of the key elements in this new field will have to be a quantum memory enabling to store quanta over extended periods of time. Systems that may fulfill the demands of such applications are comb‐shaped spin ensembles coupled to a cavity. Due to the decoherence induced by the inhomogeneous ensemble broadening, the storage time of these quantum memories is, however, still rather limited. Here we demonstrate how to overcome this problem by burning well‐placed holes into the spectral spin density leading to spectacular performance in the multimode regime. Specifically, we show how an initial excitation of the ensemble leads to the emission of more than a hundred well‐separated photon pulses with a decay rate significantly below the fundamental limit of the recently proposed “cavity protection effect”.

  相似文献   


17.
Nonlinear dynamics of continuous‐wave pumped regenerative amplifiers operating at 2 μm are investigated. At repetition rates near 1 kHz, three different operation regimes are observed, including stable regular, chaotic, and subharmonic dynamics. Numerical simulations reproduce this behavior in a quantitative way. In particular, we find stable periodic doubling regimes in which every other seed pulse experiences high gain. Exploiting a narrow parameter window beyond the onset of chaos enables operation of a high‐gain picosecond Ho:YLF regenerative amplifier which delivers up to 16 mJ picosecond pulses at 2050 nm. Energy fluctuations of the 700 Hz pulse train are as low as 0.9% rms.

  相似文献   


18.
Narrow‐linewidth lasers are key elements in optical metrology and spectroscopy. Spectral purity of these lasers determines accuracy of the measurements and quality of collected data. Solid state and fiber lasers are stabilized to relatively large and complex external optical cavities or narrow atomic and molecular transitions to improve their spectral purity. While this stabilization technique is rather generic, its complexity increases tremendously moving to longer wavelenghts, to the infrared (IR) range. Inherent increase of losses of optical materials at longer wavelengths hinders realization of compact, room temperature, high finesse IR cavities suitable for laser stabilization. In this paper, we report on demonstration of quantum cascade lasers stabilized to high‐Q crystalline mid‐IR microcavities. The lasers operating at room temperature in the 4.3‐4.6 μm region have a linewidth approaching 10 kHz and are promising for on‐chip mid‐IR and IR spectrometers.

  相似文献   


19.
Periodic arrays of plasmonic nanoantennas can enhance the directionality of light emission of nearby fluorophores and, therefore, have a great potential for a broad range of applications. Unfortunately, their narrow spectral bandwidth and the anisotropy of their optical resonances limit the use of these structures in applications such as solid state lighting. In this article, we study an alternative for periodic structures: Vogel's golden spirals. These spirals are deterministic structures with an approximate circular symmetry and a Fourier transform that is much more broadband than that of periodic lattices. Combining k‐space Stokes polarimetry and theoretical calculations, we first investigate the light scattering from Vogel's arrays and the coupling between individual nanoantennas. Next, photoluminescence measurements show that the spirals can enhance the forward emission of incoherent fluorescent sources embedded in a waveguide that also encloses the spiral. The enhancement occurs over a broad spectral band, proving the potential of Vogel's golden spirals for broadband light‐emitting devices.

  相似文献   


20.
We uncover that the breaking point of the ‐symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off‐diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at which ‐symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and the statistically averaged width of the output pattern substantially increases. Beyond the symmetry‐breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both broken and unbroken ‐symmetry. Our findings are supported by statistical analysis of parameters of stationary eigenmodes of disordered‐symmetric waveguide arrays and by analysis of dynamical evolution of single‐site excitations in such structures.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号