首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
         下载免费PDF全文
吴大建  蒋书敏  刘晓峻 《中国物理 B》2012,21(7):77803-077803
The influences of polarization direction, incidence angle, and geometry on near-field enhancements in two-layered gold nanowires (TGNWs) have been investigated by using the vector wave function method. When the polarization direction is perpendicular to the incidence plane, the local field factor (LFF) in TGNW decreases first and then increases with the increase in the incidence angle. The minimum LFF is observed at an incidence angle of 41°. It is found that the increase in the dielectric constant of the inner core leads to a decrease in the LFF. With the increase in the inner core radius, the LFF in TGNW increases first and then decreases, and the maximum LFF is observed at an inner core radius of 27 nm. On the other hand, when the polarization direction is parallel to the incidence plane, the collective motions of the induced electrons are enhanced gradually with the decrease in the incidence angle, and hence the near-field enhancement is increased.  相似文献   

2.
    
With great advances in wet chemical synthesis of nanoparticles (NPs), plasmonic NPs with various sizes and morphologies are easily available nowadays and demonstrate great potentials in optical, electronic, and biomedical applications. Plasmonic circular dichroism (CD), relating to circular dichroism responses at localized surface plasmon resonance of metal nanostructures, has emerged as a research direction of plasmonics with promising prospects in enantioselective catalysis, chiral separation, and ultrasensitive detections. Herein, plasmonic CD responses of gold nanoparticle based nanostructures are summarized. Two kinds of plasmonic CD phenomena are investigated: structural CD and induced CD. Structural CD is the response from chiral assemblies composed of plasmonic NPs with strong dipole–dipole interactions. Induced CD is the response of nonchiral plasmonic NPs with chiral molecules attached at surface. The weak CD is the result of Coulomb interaction between chiral molecules and plasmonic NPs. Efforts on how to achieve strong CD signals for these two configurations by using chiral molecules and Au nanoparticles are reported. The fabrication of chiral nanostructures, tuning and amplification of CD responses, CD‐based biosensors, chiral catalysis, and future perspectives are presented. The importance of the shape anisotropy of gold nanorods in the generation and amplification of CD signals is especially highlighted.  相似文献   

3.
安西涛  王月  牟佳佳  李静  张立功  骆永石  陈力 《发光学报》2018,39(11):1505-1512
利用原位还原法成功制备了尺寸均一、超薄完整金壳包覆的NaYF4:Yb,Er@SiO2@Au(NSA)纳米结构,其XRD、TEM、EDX、HRTEM-HAADF、Mapping及吸收光谱表征结果表明,SiO2壳及纳米金壳的平均厚度分别约为5nm和2nm。在980nm连续激光激发下,系统研究了核壳结构的上转换荧光强度与氯金酸浓度的依赖关系。稳态光谱结果显示,NSA与仅SiO2包覆样品(NS)相比Er3+的红绿荧光强度均增强了~2.8倍。通过分析上转换荧光动力学过程及利用FDTD方法模拟,讨论了表面等离激元增强上转换荧光的机制。  相似文献   

4.
    
Efficient biexciton (BX) photoluminescence (PL) from quantum dots (QDs) paves the way to the generation of entangled photons and related applications. However, the quantum yield (QY) of BX PL is much lower than that for single excitons (EX) due to efficient Auger-like recombination. In the vicinity of plasmon nanoparticles, the recombination rates of EX and BX may be affected by the Purcell effect, fluorescence quenching, and the excitation rate enhancement. Here, the effect of the plasmon resonance spectral position on the EX and BX PL is experimentally studied in two cases: when the plasmon band overlaps with the excitation wavelength and when it coincides with the QDs PL band. In the first case, the EX and BX excitation efficiencies are significantly increased but the EX QY reduced. As a result, the BX-to-EX QY ratio is higher than 1 at plasmon–exciton systems separations shorter than 40 nm. In the second case, the radiative recombination rates are enhanced by several orders of magnitude, which led to an increase in BX QY over distances of up to 90 nm. Finally, these two effects are obtained in the same hybrid structure, with the resultant increase in both excitation efficiency and QY of BX PL.  相似文献   

5.
金属纳米颗粒的等离激元共振引起的局域场增强效应,对显微成像、光谱学、半导体器件、非线性光学等诸多领域都具有极大的应用潜力。尤其是在光学纳米材料领域,通过亚波长金属纳米颗粒与电介质的组合引起局域场增强效应,提高了纳米材料的光学性能,并促进纳米材料在光学领域的应用。本文主要综述几种常见纳米结构所产生的局域场增强效应及其应用,详细介绍并总结了金属纳米材料的不同结构参数与局域场增强的关系及局域场增强在非线性光学、光谱学、半导体器件等领域的应用。未来,随着对金属纳米材料的研究愈发深入,局域场增强的应用将更加广泛,这将对诸多领域的发展产生重要影响。  相似文献   

6.
等离子体增感太阳能电池中,层层自组装金纳米粒子的表面等离子体共振能产生光电电流,金纳米粒子层的光电转换效率随表面等离子体共振强度的提升而增加。等离子体增感太阳能电池初步试验光电转换效能为0.75%。利用模型仿真电荷分离的现象、光电电流的产生,以及表面等离子体共振和光电电流产生之间的关系来解释实验结果。在未来,通过优化等离子体增感太阳能电池组件,可以进一步提升其转换效率。这在表面等离子体激活太阳能电池及等离子体太阳能电池领域将有很大应用潜力。  相似文献   

7.
8.
本文通过离子交换和后续热处理的方法在钠钙玻璃中引入Ag纳米颗粒, 并将Ag掺杂的钠钙玻璃作为衬底增强了钠钙玻璃和荧光染料罗丹明6G(R6G)的荧光辐射。Ag纳米颗粒的表面等离激元散射增强了掺杂玻璃的荧光, 而R6G的增强荧光辐射则源于掺杂玻璃与荧光染料之间的辐射共振能量转移。  相似文献   

9.
基于贵金属表面局域等离子体共振(LSPR)调控上转换荧光的研究绝大部分集中于纳米颗粒或纳米棒,即使同一复合结构对上转换荧光(UCL)也有或增强或猝灭的截然相反的报道,而对于进一步提高上转换荧光材料的效率和强度以满足更广泛的应用需求则越来越引起人们高度关注。本文通过构筑两种纳米金/上转换纳米晶复合结构,系统研究了各自的表面局域等离激元对上转换荧光的增强和猝灭效应,基于微结构表征及对稳态、瞬态荧光光谱的分析,阐述了波长依赖的上转换荧光增强和猝灭机理。结果显示超薄纳米金壳结构对Ho3+、Fe3+共掺杂纳米晶的绿光发射选择性地增强了25倍,源于激发光能量与LSPR能量匹配的激发增强机制,而在覆盖有超薄纳米金膜的上转换纳米晶复合结构中却观察到了金膜引起的Er上转换荧光猝灭,同时红绿比随金膜厚度增加而增大,来自于金膜对激发光的散射、金膜的LSPR吸收带与绿光发射能级耦合引起无辐射跃迁几率增加,绿光上转换荧光强度下降相对显著,UCL寿命变短。  相似文献   

10.
利用溶胶凝胶法在玻璃衬底上制备了金-二氧化钛(Au-TiO2)复合纳米薄膜,研究了热处理温度对复合薄膜表面纳米颗粒沉积的影响。利用原子力显微镜对样品进行了形貌表征,结果显示:复合薄膜是由纳米微晶组成的致密膜,温度越高越有利于Au粒子的形成。在550℃的热处理温度下,薄膜表面沉积的纳米微晶的粒径约为100nm。利用紫外-可见分光光度计测量了反射谱线,结果表明:由于局域表面等离子体共振(LSPR)的产生,在不同的热处理温度下,第一个反射峰(短波长处)不发生变化,第二个反射峰(长波长处)发生漂移(红移)。  相似文献   

11.
         下载免费PDF全文
李婷  于丽  逯志欣  宋钢  张恺 《中国物理 B》2011,20(8):87805-087805
The effects of various parameters including thickness and dielectric constants of substrates,shapes of nanoparticles,and polarization direction of incident light,on the extinction spectra of periodic gold nanoparticle arrays are investigated by the full-vectorial three-dimensional (3D) finite difference time domain (FDTD) method.The calculated results show that the substrate affects the extinction spectra by coupling the fields co-excited by the substrate and gold nanoparticles.Extinction spectra are influenced by the shapes of the nanoparticles,but there are no obvious changes in extinction spectra for similar shapes.The polarization direction of incident light has a great influence on the extinction spectra.The implications of these results are discussed.  相似文献   

12.
A geometrical configuration of Fe2O3/Au core-shell nanorice dimer is proposed and its multipolar plasmon Fano- like resonance characteristics are theoretically investigated by generalizing the plasmon hybridization model of individual nanorice to the bright and dark modes of the nanorice dimer. Under the irradiation of polarization light, the extinction spectra of the nanorice dimer are numerically simulated by using the finite element method (FEM). Our studies show that the Fano-like resonance of the nanorice dimer results in an asymmetric line shape of the Fano dip in the extinction spectrum which can be controlled by varying the structure parameters of the nanorice dimer. Meanwhile, there is a giant field enhancement at the gap between the two nanorices on account of the plasmonic coupling in the nanorice dimer. The aforementioned two characteristics of the nanorice dimer are useful for plasmon-induced transparency and localized surface plasmon resonance sensors.  相似文献   

13.
丛超  吴大建  刘晓峻 《物理学报》2012,61(4):47802-047802
本文基于时域有限差分方法(finite difference time domain, FDTD)研究了入射光波长、入射光偏振方向、纳米管几何形状、 管壁厚度及内核和包埋介质的变化对椭圆截面金纳米管近场分布特征的影响. 研究发现, 入射光波长为纳米管等离激元共振波长时, 纳米管近场增强最大; 入射光偏振方向与椭圆长轴夹角的增加会导致管内的场强迅速增大; 椭圆管半短轴变大可以调节纳米管场强分布从两端高、中间低变化为均匀分布; 内核和包埋介质介电常数的增大均会使得纳米管内部及周围场强逐渐减弱.  相似文献   

14.
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.  相似文献   

15.
对金属薄膜上的二维亚波长小孔阵列的光透射增强现象进行了数值模拟,结果显示不仅实际金属薄膜上的小孔阵列结构具有透射增强效应,理想导体薄膜的相同结构也具有透射增强效应,但没有实际金属薄膜的增强明显-通过分析指出,这种小孔阵列的光透射增强效应是一种复杂的波导耦合效应-与金属薄膜上的表面电流一样,表面等离激元波具有将入射光能量从金属表面向小孔转移的作用,但不是透射增强的本质原因-关键词:表面电流共振耦合透射增强表面等离激元  相似文献   

16.
    
A simple and efficient principle for nanopatterning with wide applicability in the sub‐50 nanometer regime is chemisorption of nanoparticles; at homogeneous substrates, particles carrying surface charge may spontaneously self‐organize due to the electrostatic repulsion between adjacent particles. Guided by this principle, a method is presented to design, self‐assemble, and chemically functionalize gradient nanopatterns where the size of molecular domains can be tuned to match the level corresponding to single protein binding events. To modulate the binding of negatively charged gold nanoparticles both locally (<100 nm) and globally (>100 μm) onto a single modified gold substrate, ion diffusion is used to achieve spatial control of the particles’ mutual electrostatic interactions. By subsequent tailoring of different molecules to surface‐immobilized particles and the void areas surrounding them, nanopatterns are obtained with variable chemical domains along the gradient surface. Fimbriated Escherichia coli bacteria are bound to gradient nanopatterns with similar molecular composition and macroscopic contact angle, but different sizes of nanoscopic presentation of adhesive (hydrophobic) and repellent poly(ethylene) glycol (PEG) domains. It is shown that small hydrophobic domains, similar in size to the diameter of the bacterial fimbriae, supported firmly attached bacteria resembling catch‐bond binding, whereas a high number of loosely adhered bacteria are observed on larger hydrophobic domains.  相似文献   

17.
Using the finite-difference time-domain (FDTD) method, we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere. The influences of coupling with different nanoparticles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated. It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanoparticle. This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles. Supported by the National Natural Science Foundation of China (Grant Nos. 10821062 and 10804004), the National Basic Research Program of China (Grant No. 2007CB307001), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800011023) Contributed by GONG QiHuang  相似文献   

18.
19.
20.
         下载免费PDF全文
We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties. We analyse this mode from different aspects by looking at the distribution patterns of local field intensity, energy flux, absorption and charge density. We find that in the mode the polarized charge is highly densified in a very limited volume around the corner of the nanocube and results in very strong local field enhancement. Perturbations of the incident energy flux and light absorption are also strongly localized in this small volume of the corner region, leading to both low absorption and low scattering cross section. As a result, the extinction is low for the mode. Metal nanoparticles involving such peculiar modes may be useful for constructing nonlinear compound materials with low linear absorption and high nonlinearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号