共查询到20条相似文献,搜索用时 15 毫秒
1.
Ian N. Heppner Molla R. Islam Michael J. Serpe 《Macromolecular rapid communications》2013,34(21):1708-1713
Poly (N‐isopropylacrylamide) (pNIPAm)‐based microgels undergo a transition from fully water swollen (solvated) to deswollen (desolvated) as the temperature of the water they are dissolved in is increased >32 °C. In this submission, we examine how the temperature of this transition, i.e., the volume phase transition temperature (VPTT), depends on the concentration of methanol (MeOH) in water the microgels are dissolved in. To accomplish this, pNIPAm‐based etalons are utilized, and it is shown that the VPTT for the microgels is much less than that previously observed for linear pNIPAm and pNIPAm‐based microgels. Furthermore, and most interestingly, it is determined that the microgels can collapse in solutions containing high MeOH (>∼65% MeOH) concentration. This is in contrast to previous studies, which show that no VPTT is observed for pNIPAm in aqueous solutions containing >∼65% MeOH.
2.
John Texter 《Macromolecular rapid communications》2012,33(23):1996-2014
Stimuli responsiveness in polymer design is providing basis for diversely new and advanced materials that exhibit switchable porosity in membranes and coatings, switchable particle formation and thermodynamically stable nanoparticle dispersions, polymers that provide directed mechanical stress in response to intensive fields, and switchable compatibility of nanomaterials in changing environments. The incorporation of ionic liquid monomers has resulted in many new polymers based on the imidazolium group. These polymers exhibit all of the above‐articulated material properties. Some insight into how these anion responsive polymers function has become empirically available. Much opportunity remains for extending our understanding as well as for designing more refined stimuli‐responsive materials. 相似文献
3.
Summary: Self‐oscillating polymers and nano‐gel particles consisting of N‐isopropylacrylamide and the ruthenium catalyst of the Belousov‐Zhabotinsky reaction have been prepared. In order to clarify the crosslinking effect on the self‐oscillating behavior, the phase transition behaviors were investigated by measuring the transmittance and the fluorescence intensity of the polymer solution and the gel bead suspension. Cooperative effects due to crosslinking will play an important role for the design of nanoactuators.
4.
Chang‐Chung Yang Yanqing Tian Alex K.‐Y. Jen Wen‐Chang Chen 《Journal of polymer science. Part A, Polymer chemistry》2006,44(19):5495-5504
We report two novel multifunctional copolymers consisting of a temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAA) segment and a fluorescent fluorene‐containing acrylic polymer segment with pH responsiveness and/or DNA‐sensing ability. The functional acrylic monomer with a fluorene dimer side group substituted with amino units was synthesized first. Then, it was copolymerized with N‐isopropylacrylamide to result in a new water‐soluble, fluorescent PNIPAA copolymer ( P1 ). The fluorescent properties of P1 under neutral and acidic conditions did not change with the temperature. However, significant variation was observed under basic conditions. The protonation of the amino moiety at a low pH improved the solubility and prevented aggregation for fluorescence quenching, but not under the basic conditions. Although aggregation of the fluorene units was significant at room temperature under basic conditions, the aggregation was resolved at a temperature above the lower critical solution temperature. These findings indicated the pH‐ and temperature‐responsive characteristics of P1 . Moreover, after the amino groups were quaternized, the obtained polymer could be used as a biosensor because the fluorescence intensity was quenched with the addition of DNA. This study demonstrates that multifunctional materials with pH‐ and temperature‐sensing characteristics and biological molecules could be realized by the incorporation of a functional fluorene‐containing moiety with PNIPAA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5495–5504, 2006 相似文献
5.
Dr. Sudhina Guragain Dr. Bishnu Prasad Bastakoti Dr. Victor Malgras Prof. Kenichi Nakashima Prof. Yusuke Yamauchi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(38):13164-13174
Stimuli‐responsive materials are of immense importance because of their ability to undergo alteration of their properties in response to their environment. The properties of such materials can be tuned by subtle adjustments in temperature, pH, light, and so forth. Among such smart materials, multi‐stimuli‐responsive polymeric materials are of pronounced significance as they offer a wide range of applications and their properties can be tuned through several mechanisms. Here, we aim to highlight some recent studies showcasing the multi‐stimuli‐responsive character of these polymers, which are still relatively little known compared to their single‐stimuli‐responsive counterpart. 相似文献
6.
7.
Yixiao Dong Chaocan Zhang Lili Wu Yanjun Chen Yuanyuan Hu 《Macromolecular rapid communications》2014,35(22):1943-1948
For most stimuli‐responsive polymer materials (SRPMs), such as polymer gels, micelles, and brushes, the responsive mechanism is based on the solubility or compatibility with liquid media. That basis always results in distorting or collapsing the material's appearance and relies on external liquids. Here, a novel kind of SRPMs is proposed. Unlike most SRPMs, liquid is stored within special domains rather than expelled, so it is deforming‐free and relying on no external liquid, which is referred to as self‐storage SRPMs (SS‐SRPMs). The facile and universal route to fabricate SS‐SRPMs allows for another novel family of SRPMs. Furthermore, it is validated that SS‐SRPMs can drastically respond to outside temperature like switchers, especially for optical and electrochemical responses. Those features hold prospects for applications in functional devices, such as smart optical lenses or anti‐self‐discharge electrolytes for energy devices.
8.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.
9.
Zhonglan Tang Yoshikatsu Akiyama Teruo Okano 《Journal of Polymer Science.Polymer Physics》2014,52(14):917-926
Poly(N‐isopropylacrylamide) (PIPAAm), which is a well‐known temperature‐responsive polymer, is modified on substrates by various methods. At 37 °C, PIPAAm modified surface is hydrophobic and allows cells to adhere to and proliferate on the surface. By reducing temperature below the lower critical solution temperature of PIPAAm, the surface turns to hydrophilic and allows cells to detach themselves from the surface spontaneously. With this technology, cell sheet engineering is established several years ago. This review focuses on the preparations and characteristics of PIPAAm‐modified surfaces, and discusses the effect of surface properties on cell adhesion and deadhesion. In addition, the recent improvement of PIPAAm‐modified surfaces for cell culture and the clinical applications of cell sheets harvested from the surfaces are also mentioned. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 917–926 相似文献
10.
Summary: Here we show a new design concept of functional polymer gel for rapid deswelling by utilizing micelle‐forming ability of surfactant. A thermosensitive polymer bearing a surfactant was synthesized by using N‐isopropylacrylamide and a reactive surfactant. Above lower critical solution temperature, the grafted surfactant acts to form micelle structure. In the shrinking process, the inside water is rapidly squeezed out through hydrophilic channel between the formed micelles and consequently the gel shrinks quickly.
11.
12.
Chaoliang He Changwen Zhao Xinhua Guo Zhaojun Guo Xuesi Chen Xiuli Zhuang Shuying Liu Xiabin Jing 《Journal of polymer science. Part A, Polymer chemistry》2008,46(12):4140-4150
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008 相似文献
13.
Dr. Qiang Matthew Zhang Wenwen Xu Prof. Michael J. Serpe 《Angewandte Chemie (International ed. in English)》2014,53(19):4827-4831
Novel multiresponsive microgels based on poly(N‐isopropylacrylamide) were synthesized to contain triphenylmethane leucohydroxide, and used to construct etalons. The optical properties of the resultant etalons were investigated, and their response to ultraviolet and visible irradiation, solution pH changes, and the presence of a mimic of the nerve agent Tabun characterized. We clearly show that the optical properties of the device depended dramatically on these stimuli. This investigation illustrates the versatility of the microgel‐based etalon structure, and showcases the clear utility of such devices for remote actuation, color tunable optics, sensing, and potential remotely triggered drug delivery applications. 相似文献
14.
Jian‐Tao Zhang Shi‐Wen Huang Si‐Xue Cheng Ren‐Xi Zhuo 《Journal of polymer science. Part A, Polymer chemistry》2004,42(5):1249-1254
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004 相似文献
15.
Kosuke Okeyoshi Tetsuya Abe Yuji Noguchi Hidemitsu Furukawa Ryo Yoshida 《Macromolecular rapid communications》2008,29(11):897-903
Surfactant‐grafted hydrogels with a fast response to temperature were prepared. In order to clarify the mechanism of rapid shrinking, the effects of the grafted surfactant and the homogeneity of the main chain were investigated. Poly(NIPAAm‐co‐S180A) gels prepared using a chemical cross‐linker (bis‐PNS gels) exhibited rapid shrinking, as did PNS gels prepared by γ‐ray irradiation (γ‐PNS gels). This suggested that the rapid shrinking of the PNS gel did not depend on the homogeneity of the main‐chain structure. The shrinking kinetics of the bis‐PNS gels depended on the amount of the introduced surfactant, which means that shrinking is enhanced by micelle formation as a dynamic driving force. From the analysis by dynamic light scattering (DLS) and scanning microscopic light scattering (SMILS), it was suggested that the micelle structure, which induced rapid shrinking, existed in the bis‐PNS gel.
16.
Rapid,On‐Command Debonding of Stimuli‐Responsive Cross‐Linked Adhesives by Continuous,Sequential Quinone Methide Elimination Reactions 下载免费PDF全文
Hyungwoo Kim Hemakesh Mohapatra Scott T. Phillips 《Angewandte Chemie (International ed. in English)》2015,54(44):13063-13067
Adhesives that selectively debond from a surface by stimuli‐induced head‐to‐tail continuous depolymerization of poly(benzyl ether) macro‐cross‐linkers within a poly(norbornene) matrix are described. Continuous head‐to‐tail depolymerization provides faster rates of response than can be achieved using a small‐molecule cross‐linker, as well as responses to lower stimulus concentrations. Shear‐stress values for glass held together by the adhesive reach 0.51±0.10 MPa, whereas signal‐induced depolymerization via quinone methide intermediates reduces the shear stress values to 0.05±0.02 MPa. Changing the length of the macro‐cross‐linkers alters the time required for debonding, and thus enables the programmed sequential release of specific layers in a glass composite material. 相似文献
17.
Chaoliang He Changwen Zhao Xuesi Chen Zhaojun Guo Xiuli Zhuang Xiabin Jing 《Macromolecular rapid communications》2008,29(6):490-497
A series of novel pH‐ and temperature‐responsive diblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly[(L ‐glutamic acid)‐co‐(γ‐benzyl L ‐glutamate)] [P(GA‐co‐BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA‐co‐BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region. Notably, when the BLG content in P(GA‐co‐BLG) block was more than 30 mol.‐%, the diblock copolymer responded sharply to a narrow pH change in the region of pH 7.4–5.5.
18.
Xing Xiao Ya‐qin Fu Jian‐jun Zhou Zhi‐shan Bo Lin Li Chi‐Ming Chan 《Macromolecular rapid communications》2007,28(9):1003-1009
A functional coil–rod–coil triblock copolymer containing a terfluorene unit as the rigid segment and poly(N‐isopropylacrylamide) (PNIPAAm) as the flexible block was successfully synthesized via reversible addition–fragmentation chain‐transfer (RAFT) polymerization using terfluorene‐based dithioester as the RAFT agent. The temperature‐responsive optical properties were investigated with the aid of dynamic light scattering and fluorescence techniques. Additionally, the relationship between the optical properties and the reversible phase transition of the doping system formed by blending the copolymer with tetraphenylporphine tetrasulfonic acid was studied. Above the lower critical solution temperature, the energy transfer efficiency decreased as a result of the globule–to–coil transition from PNIPAAm segments. The result indicates that these copolymers have a potential to be used as responsive fluorescent probes in facile detection of dye‐labeled biopolymers.
19.
Ing. Jean‐Philippe Couturier Dr. Martin Sütterlin Prof. Dr. André Laschewsky Dr. Cornelia Hettrich Dr. Erik Wischerhoff 《Angewandte Chemie (International ed. in English)》2015,54(22):6641-6644
Dual responsive inverse opal hydrogels were designed as autonomous sensor systems for (bio)macromolecules, exploiting the analyte‐induced modulation of the opal’s structural color. The systems that are based on oligo(ethylene glycol) macromonomers additionally incorporate comonomers with various recognition units. They combine a coil‐to‐globule collapse transition of the LCST type with sensitivity of the transition temperature toward molecular recognition processes. This enables the specific detection of macromolecular analytes, such as glycopolymers and proteins, by simple optical methods. While the inverse opal structure assists the effective diffusion even of large analytes into the photonic crystal, the stimulus responsiveness gives rise to strong shifts of the optical Bragg peak of more than 100 nm upon analyte binding at a given temperature. The systems’ design provides a versatile platform for the development of easy‐to‐use, fast, and low‐cost sensors for pathogens. 相似文献
20.
Stimuli‐responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi‐stimuli‐responsive polymer materials have been designed and developed in recent years. Compared with conventional single‐ or dual‐stimuli‐based polymer materials, multi‐stimuli‐responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi‐stimuli‐responsive polymer materials, namely, multi‐stimuli‐responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi‐stimuli‐responsive films (polymer brushes, layer‐by‐layer polymer films, and porous membranes), and multi‐stimuli‐responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi‐stimuli‐responsive particles, films, and bulk gels are comprehensively discussed here. 相似文献