首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time resolved Raman spectroscopy (TRRS) can provide subsurface information from multi‐layered samples of transparent and translucent evaporative and silicate minerals up to several centimetres thick. Depth information was obtained using 3‐ps pulsed laser excitation at 720 nm and a gated intensified charge‐coupled device detector with stepwise increasing delay times. Blocks of different minerals were used as first, second or third layers, and Raman spectra from deeper layers could be detected through 10 mm of translucent calcite and up to 40 mm of transparent halite crystals. Measurements by conventional confocal Raman, as well as spatially offset Raman spectroscopy were also successful in distinguishing different mineral layers. This study establishes the great potential for the use of Raman spectroscopy in future planetary exploration, where TRRS could be used as a non‐invasive tool for profiling the (sub‐)surface at millimetre‐depth resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We demonstrate how transmission Raman geometry can be effectively used for non‐invasive probing of the content of pharmaceutical capsules. This approach is particularly beneficial in situations where the conventional Raman backscattering method is hampered or fails because of excessive surface Raman or fluorescence signals emanating from the capsule shell material, which pollute the much weaker subsurface Raman signals with undesired noise. It is demonstrated that such interfering signals can be effectively suppressed by the transmission geometry. The ability to avoid surface fluorescence and Raman signals in conjunction with the superior, bulk‐probing properties of the transmission Raman geometry provides an analytical technique ideally suited for fast on‐line process control monitoring applications in pharmaceutical industry where rapid, chemically specific bulk analysis is required. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Random Raman lasers offer a unique opportunity to study many exciting dynamics of light propagation in turbid media. One of the most notable features observed to exist in the recently discovered random Raman laser is the presence of higher order stimulated Raman scattering processes. The higher order Stokes generation likely comes from photons that have the longest pathlengths, thus have the most gain. This makes these photons particularly likely to offer interesting insight into wave propagation effects such as coherent backscattering and optical Anderson localization. In this work, we use Monte Carlo simulations to investigate how these higher order processes occur and what properties they are expected to exhibit when considering only transport equation dynamics. This knowledge will allow us to look for deviations from this theory in future experiments to determine whether wavelike properties play an active role in random Raman lasing.  相似文献   

4.
Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. Currently optical fiber probes are used as major tools in SORS measurement, which are either slow (single fiber probe with mechanical movement) or restricted in selecting offset range and interval (fiber probe array). This study proposes a new method to conduct SORS measurement based on a newly developed line‐scan hyperspectral Raman imaging system. A 785‐nm point laser was used as an excitation source. A detection module consisting of an imaging spectrograph and a charge‐coupled device camera was used to acquire line‐shape SORS data in a spectral region of −592 to 3015 cm−1. Using a single scan, the system allowed simultaneous collection of a series of Raman spectra in a broad offset range (e.g. 0–36 mm in two sides of the incident laser) with a narrow interval (e.g. 0.07 mm). Four layered samples were created by placing butter slices with thicknesses of 1, 4, 7, and 10 mm on top of melamine powder, providing different individual Raman characteristics to test the line‐scan SORS technique. Self‐modeling mixture analysis (SMA) was used to analyze the SORS data. Raman spectra from butter and melamine were successfully retrieved for all four butter‐on‐melamine samples using the SMA method. The line‐scan SORS measurement technique provides a flexible and efficient method for subsurface evaluation, which has potential to be used for food safety and quality inspection. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We have used resonant Raman scattering as a novel, noninvasive in vivo optical technique to measure the concentration of macular carotenoid pigments in the living human retina. Using a backscattering geometry and resonant molecular excitation in the visible, we measure the Raman peaks that originate from the single- and double-bond stretch vibrations of the p -conjugated molecule's carbon backbone. The Raman signals scale linearly with carotenoid content, whereas the required laser excitation is well under safety limits for macular exposure. The Raman technique is objective and quantitative and may lead to a new method for rapid screening of carotenoid pigment levels in large human populations that are at risk for vision loss from age-related macular degeneration, the leading cause of blindness of the elderly in the United States.  相似文献   

6.
In this paper, according to Kirchhoff approximation, the optical backscattering enhancement of one-dimensional random rough surface, which includes fractal rough surfaces and random rough surfaces with Gaussian and exponential correlation simulated by Monte Carlo method, is obtained. It is shown that backscattering enhancement of random rough surfaces will increase with increasing the rms height of rough surface for a given correlation length. The angle width of backscattering enhancement is directly proportional to incident wavelength and inverse proportional to correlation length of rough surface. Complex phase of scattering field from superposed rough surface is uniformly distributed, none of the directions is of more overweight. The backscattering enhancement is also studied by wavelet analysis. The numerical results show good consistent with that of the relative references.  相似文献   

7.
Recently, we presented a study of pulse scattering by rough surfaces based on the first-order Kirchhoff approximation which is applicable to rough surfaces with RMS slope less than 0.5 and correlation distance l≳λ. However, there has been an increased interest in enhanced backscattering from rough surfaces, study of which requires inclusion of the second-order Kirchhoff approximation with shadowing corrections. This paper presents a theory for the two-frequency mutual coherence function in this region and shows that the multiple scattering on the surface gives rise to an additional pulse tail in the direction of enhanced backscattering. The theory predicts pulse broadening approximately 20% greater than that caused by single scattering alone for a delta-function incident pulse and typical surface parameters. Analytical results are compared with Monte Carlo simulations and millimetre-wave experiments for the one-dimensional rough surface with RMS height 1λ and correlation distance 1λ, showing good agreement.  相似文献   

8.
Abstract

Recently, we presented a study of pulse scattering by rough surfaces based on the first-order Kirchhoff approximation which is applicable to rough surfaces with RMS slope less than 0.5 and correlation distance l?λ. However, there has been an increased interest in enhanced backscattering from rough surfaces, study of which requires inclusion of the second-order Kirchhoff approximation with shadowing corrections. This paper presents a theory for the two-frequency mutual coherence function in this region and shows that the multiple scattering on the surface gives rise to an additional pulse tail in the direction of enhanced backscattering. The theory predicts pulse broadening approximately 20% greater than that caused by single scattering alone for a delta-function incident pulse and typical surface parameters. Analytical results are compared with Monte Carlo simulations and millimetre-wave experiments for the one-dimensional rough surface with RMS height 1λ and correlation distance 1λ, showing good agreement.  相似文献   

9.
Yung-Fu Chen 《Surface science》1997,380(2-3):199-209
A practical simulation method has been performed for studies of the influence of surface excitations on the angular distributions of photoelectron peak intensities. The surface effects have been incorporated into simulations by using the surface excitation parameters (SEPs) which have been calculated with the extended Drude dielectric function. Also, elastic scattering cross sections are calculated using the finite difference method for a Hartree-Fock-Wigner-Seitz potential in the Dirac equation to take into account the solid-state effect. Results of Monte Carlo simulations reveal that surface effects lead to a reduction of the intensities at small detection angles and a sharp decrease at large angles since the surface excitation is most probable for glancing electrons. The calculated results taking into account surface effects are in better agreement with the experimental data.  相似文献   

10.
Raman spectroscopy is a common tool for the qualitative and quantitative chemical analysis of molecules. Although the unique identification of molecules is possible via their vibrational lines, high concentrations (mmol/l) are needed for their nonresonant excitation owing to their low scattering cross section. The intensity of the Raman spectra is amplified by the use of the surface‐enhanced Raman scattering (SERS) technique. While the use of silver sols results only in a limited reproducibility of the Raman line intensities, lithographically designed, nanostructured gold surfaces used as SERS‐active substrates should, in principle, combine the high sensitivity with better reproducibility. For this purpose, we have produced gratings of gold dots on Si(001) surfaces by means of electron beam lithography. Qualitative and quantitative investigations of crystal violet (CV) performed using nanostructured surfaces give high reproducibility and enhancement of the Raman lines. The substrates are reusable after cleaning; all results presented could be obtained from a single SERS substrate. For the experiments very low laser powers were used. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Raman spectroscopic investigation on weak scatterers such as metals is a challenging scientific problem. Technologically important actinide metals such as uranium and plutonium have not been investigated using Raman spectroscopy possibly due to poor signal intensities. We report the first Raman spectrum of uranium metal using a surface‐enhanced Raman scattering‐like geometry where a thin gold overlayer is deposited on uranium. Raman spectra are detected from the pits and scratches on the sample and not from the smooth polished surface. The 514.5‐ and 785‐nm laser excitations resulted in the Raman spectra of uranium metal whereas 325‐nm excitation did not give rise to such spectra. Temperature dependence of the B3g mode at 126 cm−1 is also investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Raman optical activity (ROA) has been exclusively observed in the visible (VIS) and near‐infrared (NIR) spectral regions to date. During the last few years, we have designed, constructed and tested the first ROA instrument, operating in the deep‐ultraviolet (DUV) spectral region employing 244‐nm excitation. This novel DUV ROA instrument is based on a backscattering geometry and incident circular polarization modulation (ICP); it makes use of a fast DUV imaging lens‐based spectrograph and specially designed DUV grade polarization optics. The performance of this instrument has been evaluated by analysing measured non‐resonant DUV ROA spectra of non‐absorbing enantiomeric liquid samples and by comparing these with corresponding ROA spectra recorded in the visible spectral region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Well‐resolved Raman spectra of organic acids were obtained with 785 nm excitation using a portable Raman instrument (Ahura First Defender XL) under low temperature −5 °C atmospheric conditions at an altitude of 2000 m (Axamer Lizum, Innental, Austria). The portable Raman spectrometer tested in this setting permits fast and unambiguous detection of solid forms of these organic acids (formic, acetic, valeric, hexanoic, heptanoic, isophthalic, ascorbic and mellitic) under field conditions. This demonstrates the possibility to use a miniaturized Raman spectrometer as a key instrument for investigating the presence of organic compounds and biomolecules under low temperature conditions. These results are important for future missions focusing not only on Mars, where Raman spectroscopy will be a key non‐destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary surfaces or near sub‐surfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a theory of scattering from very rough metallic and dielectric surfaces using the first- and second-order Kirchhoff approximations (KA) modified with the angular and propagation shadowing. The shadowing functions limit the single and double scattered waves which are illuminated and not shadowed by the surface. The theoretical results are compared with the Monte Carlo simulations showing the range of validity of the theory. The theory is applicable to the range where the RMS height is close to a wavelength and the RMS slope is close to unity, and the second medium is lossy. The second-order scattering includes two waves travelling in opposite directions on the surface, giving a physical explanation of the enhanced backscattering.  相似文献   

16.
Smith ZJ  Berger AJ 《Optics letters》2005,30(11):1363-1365
In a two-layer diffusing medium, polarized light directly backscattering off the superficial layer will partially retain its sense of polarization, whereas deeper-probing light will be increasingly depolarized by diffusion. This effect has been studied in both elastic scattering and fluorescence contexts. We apply this method to Raman scattering in two two-layer models with a highly diffusing lower layer of glucose powder and an upper layer of either clear plastic or chicken skin. We employ detection of orthogonal polarization states to generate a Raman spectrum of only the superficial layer by combining the orthogonal signals.  相似文献   

17.
The unusually large Raman signals originating from molecules adsorbed on electrode surfaces are postulated to arise from resonance enhancement by electronic processes at the rough metal-eletrolyte surface. By modelling this transition region between metal and eletrolyte with a collection of metallic spheres surrounded by adsorbate and ambient medium on top of a flat metal substrate, satisfactory agreement is obtained between measured and calculated spectra of both ΔR/R and the excitation function of the Raman signals.  相似文献   

18.
In this work, we demonstrate that the applied electric‐field strength and orientation can multiply modulate the Raman intensity and vibrational wavenumber of small molecule–metal complex, 1,4‐benzenedithiol–Au2 (1,4BDT–Au2), by density functional theory and time‐dependent density functional theory simulations. The polarizabilities are changed by the applied electric fields, leading to enhanced specific vibrational intensity and shifted vibrational wavenumber of the surface‐enhanced Raman scattering effect. The applied electric fields perturb the bonds and angles of the 1,4BDT–Au2 complex. Owing to this reason, the peaks of Raman spectra related to these structures exhibit distinguishable responses in quasi‐static field (low‐frequency oscillating electric field). We use the visualized method of charge difference density to show that the electric fields tune the traditional excited state to pure charge‐transfer excited state. The charge‐transfer resonance transition produces enhanced Raman intensities for non‐totally symmetric modes and totally symmetric modes. These simulation results of the function of static electric field provide new guidance for the surface‐enhanced Raman scattering measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We report surface-enhanced Raman scattering (SERS) from 4-mercaptopyridine adsorbed on nanotextured silver surfaces as the coverage of silver is varied. The degree of surface enhancement is strongly dependent on silver coverage and correlated to the extinction of the surface at the Raman excitation wavelength, that extinction being determined by multiparticle surface plasmon resonances. The coverage dependence of the Raman intensity is consistent with signals being dominated by molecules at junctions inside nanoparticle aggregates where electromagnetic energy is localized into “hot spots” by interactions of the incident and scattered fields with the surface plasmons. The Raman intensity drops precipitously near the conductivity percolation threshold because these hot spots are destroyed when conducting paths allow plasmons to propagate. Our approach to substrate preparation provides clean surfaces with average enhancements ≥107, an order of magnitude larger than typical for SERS. PACS 78.67.-n; 78.68.+m; 33.20.Fb  相似文献   

20.
L-天冬氨酸在银胶体中吸附状态的表面增强拉曼光谱研究   总被引:6,自引:1,他引:5  
利用表面增强拉曼光谱 (Surface EnhancedRamanScattering,SERS)研究了L 天冬氨酸在银溶胶体中的吸附状态及其浓度变化对表面增强拉曼散射效应的影响 ,并探讨了L 天冬氨酸在银溶胶表面的吸附作用特点和规律。实验结果表明 ,L 天冬氨酸在银溶胶中有明显的SERS信号 ,经过分析表明 ,该化合物能够吸附在银表面 ,这种吸附是通过羧基和氨基中的氮原子与银结合来实现的 ,L 天冬氨酸分子中带有负电荷的羧基和氨基中带有孤对电子的氮原子都能与银原子配位 ,其中羧基在银表面的增强为电荷转移机制增强 ,具有化学吸附的特征 ;氨基在银表面的增强为电磁场增强机制 ,为物理吸附。而且SERS强度随着L 天冬氨酸浓度的变化而改变 ,当其浓度为 10 - 3mol·L- 1 时增强效果较好 ,当浓度降低 ,增强作用也逐步变弱  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号