首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the third‐generation Grubbs catalyst, the living ring‐opening metathesis polymerization of ferrocene/cobalticenium copolymers is conducted with theoretical numbers of 25 monomer units for each block, and their redox and electrochemical properties allow using the Bard–Anson electrochemical method to determine the number of metallocenyl units in each block.

  相似文献   


2.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


3.
This paper demonstrates the development of pH and thermo‐responsive fluorescent nanoparticles, which are composed of graphene oxide (GO) with BODIPY conjugated PEG, to trigger the detection of cancer cells through imaging based on intracellular accommodation. Responsiveness to pH is studied using atomic force microscopy and apparent thickness differences are seen with changes in pH. Confocal images of the nanoparticles (NPs) exhibit remarkably bright fluorescence at lysosomal pH, while no fluorescence is observed under a physiological environment, making the NPs a novel fluorescent probe. The NPs are able to accumulate the hydrophobic anticancer drug DOX due to the hydrophobic surface of GO and show excellent drug release behavior. Therefore, the NPs developed are novel candidates for a fluorescent probe to identify cancer cells and a drug carrier for cancer therapy.

  相似文献   


4.
A facile and versatile approach to constructing colorless surface coatings based on green tea polyphenols is reported, which can further act as a photoinitiating layer to initiate radical polymerization. These colorless green tea polyphenol coatings are capable of successfully photografting polymer brushes, and the resulting polymer brush patterns show spatial shape adjustability by masked UV irradiation. Both surface modifications and photografted polymer brushes do not alter the original color of the substrates. This method could be promising for the development of surface modifications.

  相似文献   


5.
A new approach is reported for the preparation of a graphene–epoxy flexible transparent capacitor obtained by graphene–polymer transfer and UV‐induced bonding. SU8 resin is employed for realizing a well‐adherent, transparent, and flexible supporting layer. The achieved transparent graphene/SU8 membrane presents two distinct surfaces: one homogeneous conductive surface containing a graphene layer and one dielectric surface typical of the epoxy polymer. Two graphene/SU8 layers are bonded together by using an epoxy photocurable formulation based on epoxy resin. The obtained material showed a stable and clear capacitive behavior.

  相似文献   


6.
The modulation of the cloud point of aqueous poly(N,N‐diethylacrylamide) solutions via the formation of supramolecular cyclodextrin complexes with hydrophobic end groups, namely adamantyl, tert‐butyl phenyl and azobenzene, synthesized via RAFT polymerization is described. The dependence of the apparent cloud points after cyclodextrin complexation is investigated with respect to the type and quantity of the guest end group, the polymer chain length and the cyclodextrin/end group ratio. Furthermore, the effect is reversed via the addition of guest molecules or via biocompatible enzymatic degradation of the cyclodextrins entire.

  相似文献   


7.
Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short‐circuit current density and open‐circuit voltage in comparison with the corresponding HD‐PDFC‐DTBT (HD)‐ and DT‐PDPPTPT (DPP)‐based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance.

  相似文献   


8.
Polymeric nanosheets organized by molecular building blocks bearing specifically oriented reactive groups provide abundant and versatile strategies for tailoring structure and chemical functionality periodically over extended length scales that complement graphene. Here we report the bulk synthesis of free‐standing polymeric nanosheets via spatially confined polymerization from an elaborate 2D supramolecular system composed of two liquid‐crystalline lamellar bilayer membranes of a self‐assembled nonionic surfactant—dodecylglyceryl itaconate (DGI)—sandwiched by a water layer. By employing a covalent polymerization on the lamellar bilayer membranes, single‐bilayer‐thick (4.2 nm), and large area (greater than 100 μm2) polymeric nanosheets of bilayer membranes are achieved. The polymeric nanosheets could serve as a well‐defined 2D platform for post‐functionalization for producing advanced hybrid materials by introducing the reactions on the hydroxyl groups at the head of DGI on the outer surfaces.

  相似文献   


9.
Hybrid Pt(platinum)/carbon nanopatterns with an extremely low loading level of Pt catalysts derived from block copolymer templates as an alternative type of counter electrodes (CEs) in dye‐sensitized solar cells (DSSCs) are proposed. DSSCs employing hybrid Pt/carbon with tailored configuration as CEs exhibit higher short‐circuit current and conversion efficiencies as well as stability with a lapse of time compared with conventional cells on the basis of sputtered Pt thin films, evidencing that the new class of hybrid nanostructures possess high potential for cost‐effective electrodes in energy conversion devices.

  相似文献   


10.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


11.
A simple and versatile method is developed for preparing anisotropic polymer particles by pressing polymer microspheres at elevated temperatures. Polystyrene (PS) microspheres are used to demonstrate this approach. Depending on the mechanical deformation and wetting of the polymers on the substrates, polymer structures with special shapes such as barrel‐like or dumbbell‐like shapes can be prepared. The morphology of polymer structures can be controlled by the experimental parameters such as the pressing pressure, the pressing temperature, and the pressing time. The wetting of the polymers on the substrates dominates when the samples are annealing at higher temperatures for longer times.

  相似文献   


12.
Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real‐time image recording feature.

  相似文献   


13.
A new phenacyl‐type photoinitiator based on ethyl carbazole as a long wavelength photo­initiator is developed for free radical polymerization. Phenacyl ethyl carbazolium hexafluoroantimonate (PECH) photoinitiator is synthesized in a two‐step, one‐pot manner by quaternizing ethyl carbazole with phenacyl bromide and subsequent ion exchange reaction with potassium hexafluoroantimonate. Under irradiation, PECH tends to undergo homolytic bond cleavage bringing about initiating free radicals. However, as evidenced by cyclic voltammetry and real‐time photobleaching studies, formation of initiating cationic species is highly unlikely as the photochemically formed charged carbazole units tend to couple.

  相似文献   


14.
Micromolding surface‐initiated polymerization enables the fabrication of polymer coatings that reproduce the microscale surface topography of superhydrophobic leaves onto solid supports. Here, the surfaces of superhydrophobic leaves from Trifolium repens and Aristolochia esperanzae are molded and reproduced as the topography of a partially fluorinated polymer coating through the surface‐initiated ring‐opening metathesis polymerization of 5‐(perfluorooctyl)norbornene (NBF8). The polymer coatings have thicknesses exceeding 100 μm, which can be tailored by the amount of monomer added to the mold. These coatings are robustly bound to the substrate, contain compositions not found in nature, and achieve superhydrophobicity that is comparable to the actual leaf.

  相似文献   


15.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


16.
We present a method to produce anti‐fouling reverse osmosis (RO) membranes that maintains the process and scalability of current RO membrane manufacturing. Utilizing perfluorophenyl azide (PFPA) photochemistry, commercial reverse osmosis membranes were dipped into an aqueous solution containing PFPA‐terminated poly(ethyleneglycol) species and then exposed to ultraviolet light under ambient conditions, a process that can easily be adapted to a roll‐to‐roll process. Successful covalent modification of commercial reverse osmosis membranes was confirmed with attenuated total reflectance infrared spectroscopy and contact angle measurements. By employing X‐ray photoelectron spectroscopy, it was determined that PFPAs undergo UV‐generated nitrene addition and bind to the membrane through an aziridine linkage. After modification with the PFPA‐PEG derivatives, the reverse osmosis membranes exhibit high fouling‐resistance.

  相似文献   


17.
A key feature of any living system is the ability to sense and react to the environmental stimuli. The biochemical characterization of the underlying biological sensors combined with advances in polymer chemistry has enabled the development of stimulus‐sensitive biohybrid materials that translate most diverse chemical and biological input into a precise change in material properties. In this review article, we first describe synthesis strategies of how biological and chemical polymers can functionally be interconnected. We then provide a comprehensive overview of how the different properties of biological sensor molecules such as competitive target binding and allosteric modulation can be harnessed to develop responsive materials with applications in tissue engineering and drug delivery.

  相似文献   


18.
Low‐molecular‐weight poly(ethylene glycol) (PEG) is deliberately incorporated into synthesized swellable poly(ethylene oxide) (PEO) membranes via a facile post‐treatment strategy. The membranes exhibit both larger fractional free volume (FFV) and a higher content of CO2‐philic building units, resulting in significant increments in both CO2 permeability and CO2/H2 selectivity. The separation performance correlates nicely with the microstructure of the membranes. This study may provide useful insights in the formation and mass transport behavior of highly efficient polymeric membranes applicable to clean energy purification and CO2 capture, and possibly bridge the material‐induced technology gap between academia and industry.

  相似文献   


19.
Hydrogels that can form spontaneously via covalent bond formation upon injection in vivo have recently attracted significant attention for their potential to address a variety of biomedical challenges. This review discusses the design rules for the effective engineering of such materials, and the major chemistries used to form injectable, in situ gelling hydrogels in the context of these design guidelines are outlined (with examples). Directions for future research in the area are addressed, noting the outstanding challenges associated with the use of this class of hydrogels in vivo.

  相似文献   


20.
The first polymer bearing exTTF units intended for the use in electrical charge storage is presented. The polymer undergoes a redox reaction involving two electrons at −0.20 V vs Fc/Fc+ and is applied as active cathode material in a Li‐organic battery. The received coin cells feature a theoretical capacity of 132 mAh g−1, a cell potential of 3.5 V, and a lifetime exceeding more than 250 cycles.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号