首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Five novel ruthenium complexes, RuCl2(MOTPP)2[(S,S)-DPEN] [MOTPP = tris(4-methoxyphenyl)phosphine] (1), RuCl2(TFTPP)2[(S,S)-DPEN] [TFTPP = tris(4-trifluoromethylphenyl)phosphine] (2), RuCl2(PPh3)2[(S,S)-DPEN] (3), RuCl2(BDPX)[(S,S)-DPEN] [BDPX = 1,2-bis(diphenylphosphinomethyl)benzene] (4), RuCl2(BISBI)[(S,S)-DPEN][BISBI = 2,2′-bis((diphenylphosphino)methyl)-1,1′-biphenyl]] (5) were synthesized and used for the hydrogenation of aromatic ketones. The complexes showed high catalytic activities, especially that the catalytic activity of complex 5 containing the diphosphine with large bite angle and complex 1 containing triarylphosphine with electron-donating group were higher than the other three complexes. The enantioselectivities of products were almost not influenced by the electron factors of phosphine.  相似文献   

2.
[H(DMSO)2][trans-RuCl4(DMSO)2] (1) reacts with 2,2′-bipyridine in ethanol at room temperature resulting in the formation of a major compound, mer-[RuCl3(DMSO)(bpy)] (bpy = 2,2′-bipyridine) 3 and a known minor compound, cis-[RuCl2(DMSO)4] (4). The compounds 3 and 4 are formed via an anticipated intermediate mer-[RuCl3(DMSO)3] (2). The reaction of 3 and mer-[RuCl3(TMSO)(bpy)] (5) with small molecules like imidazole, carbon monoxide and KSCN yield, mer-[RuCl3(bpy)(im)] · 2DMSO (im = imidazole) (6) and cis-[RuCl2(TMSO)(CO)(bpy)] (7), cis-[RuCl2(DMSO)(CO)(bpy)] (8) and K[RuCl3(bpy)(SCN)] (9), respectively. The formations of 3, 6 and 7 have been authenticated by single crystal structure determinations. Compound 6 is formed by the substitution of DMSO or TMSO from 3 and 5, respectively, whereas 7 and 8 are formed by unprecedented one-electron reductions of 5 and 3. The reactions of 3 and 5 with KSCN resulted in the same compound, K[RuCl3(NCS)(bpy)] (9). DFT calculations were performed to distinguish whether the thiocyanate ligand is bound to ruthenium through S or N. In the ruthenium bipyridine systems, the HOMO contains ruthenium d-orbitals and the LUMO is typically π*-orbitals of the bipyridine ring. Complexes 3, 6 and 7 are redox active in acetone and DMSO solvent showing prominent a reduction peak and corresponding oxidation peak.  相似文献   

3.
Ruthenium complexes catalyze the oxidation of alcohols to the corresponding ketones or aldehydes when t-BuOOH (70% aq.) is used as an oxidant. The reactions proceed at room temperature to give the products in excellent to fairly good yields. Among the transition metal catalysts used, dichlorotris(triphenylphosphine)ruthenium (RuCl2(PPh3)3) showed the highest catalytic activity. 3,5-Di-t-butylcatechol and 4-t-butylcatechol are also effectively oxidized to the corresponding 1,2-benzoquinones in the presence of a catalytic amount of RuCl2(PPh3)3 at room temperature with 1.1 equiv. of t-BuOOH, in quantitative yields. Hydrogen peroxide (30% aq.) can also be employed as an oxidant to give 1,2-benzoquinones in excellent yields.  相似文献   

4.
The bulky teratiary phosphines P-t-Bu2Ph and P-t-Bu2-p-tol, provide binuclear ruthenium(I) complexes. An X-ray analysis of [Ru2Cl2(CO)4(P-t-Bu2-p-tol)2] shows the RuCl2Ru bridge to be non-planar and to have an Ru---Ru distance of 2.632Å.  相似文献   

5.
The complexes [Ru(S,S)2(PPh3)2] [S,S = EtCOCS2, (CH2)4NCS2] react with a variety of tertiary phosphines with the substitution of triphenylphosphine and the formation of [Ru(S,S)2(PR3)2]. The reaction occurs with the formation ofthe cis isomer, except for the complex with PMe2Ph that gives rise to the trans isomer as the crystal structure shows. The effect of the different phosphines on the ruthenium complex is analysed in terms of the spectroscopic and electrochemical properties of the isolated compounds. The cyclic voltammetric studies of the cis complexes show that isomerization to the trans isomer occurs on oxidation. This isomerization is not observed in the trans-[Ru(S,S)2(PMe2Ph)2] complexes that give rise to stable trans-ruthenium(II)/ruthenium(III) couples. In a similar way the diphosphine complexes afford a quasi-reversible cis-ruthenium(II)/ruthenium(III) process.  相似文献   

6.
The synthesis and characterization of ruthenium(II) complexes, [RuCl2(dmso)2(bfmh)] (1; dmso = dimethyl sulfoxide, bfmh = benzoic acid furan-2-ylmethylene-hydrazide), [RuCl2(dmso)2(btmh)](2; btmh = benzoic acid thiophen-2-ylmethylene-hydrazide), [RuCl2(dmso)2(bfeh)](3; bfeh = benzoic acid (1-furan-2-yl-ethylidene)-hydrazide) and [RuCl2(dmso)2(bpeh)](4; bpeh = benzoic acid (1-pyridin-2-yl-ethylidene)-hydrazide) are described. The ligands, when treated with either cis-[RuCl2(dmso)4] or trans(Cl)–[RuCl2(dmso)2(bpy)], resulted in the same products. This has been confirmed by IR spectra and single crystal X-ray diffraction studies. The redox behaviors of the complexes have been found to be strongly dependent on the electronic nature of the moieties present in the hydrazone ligands. The binding of the complexes to Herring sperm DNA has been studied by absorption titration and cyclic voltammetry. But, due to the random change in the absorption on the addition of DNA, only a qualitative result rather than a quantitative result has been obtained. All the complexes have been found to bind DNA through different modes to different extents. The antibacterial properties of the ligands and the complexes have been studied against five pathogenic bacteria and also the minimum inhibitory concentrations (MIC) of all the ligands and complexes 2 and 4 have been evaluated.  相似文献   

7.
Modified Mannich reactions of amines, amino acids and a model peptide with Ph2PH and CH2O gave bis(diphenylphosphinomethyl)amines (Ph2PCH2)2NR [R=Ph (1), CH2CH2OH (2), CH2COOCH2Ph (3), CH2CONHCH2COOCH2Ph (4), CH2COOH (5)] and (Ph2PCH2)2NCH2CH2N(CH2PPh2)2 (6). Reaction with [ReBr3(CO)3]2− under mild conditions led to [ReBr(CO)3]{(Ph2PCH2)2NR} [R=Ph (7), CH2CH2OH (8), CH2COOCH2Ph (9), CH2CONHCH2COOCH2Ph (10), CH2COOH (11)] and [ReBr(CO)3(Ph2PCH2)2NCH2]2 (12). All new complexes have been characterized by NMR and IR spectroscopy and for 7, 9 and 10, single-crystal X-ray diffraction analyses. Electrospray mass spectrometric studies show that the rhenium–phosphine chelates are very stable, especially in neutral methanolic solution. Hydrolysis of the ester and amide linkages slowly occur in acidic and basic solutions over several weeks; displacement of the bromide ligand also occurs in basic medium. Cytotoxicity testing of 7–10 and 12 showed that all the complexes are active against specific tumor cell lines, especially MCF-7 breast cancer and HeLa-S3 suspended uterine carcinoma.  相似文献   

8.
The dialkynyl complexes cis-[Pt(C CR)2L2] [R = Ph, L2 = 2PPh3, 2PEt3, dppe (dppe = 1,2-bis(diphenylphosphino)ethane]; R ---tBu, L2 = 2PPh3, dppe) react with silver perchlorate in a molar ratio 1:0.5 to give platinum-silver perchlorate salts of the type [Pt2 Ag(C CR)4L4](ClO4) in excellent yield. The X-ray crystal structure of [Pt2Ag(C = CPh)4(PPh3)4](ClO4) 1 shows that the cation is formed by two nearly orthogonal cis-[Pt(C CPh)2(PPh3)2] units connected through a silver cation which is unsymmetrically π-bonded to all four acetylene fragments. Similar reactions of cis-[Pt(C CR)2L2] with one equivalent of AgClO4 afford cationic complexes of general formula [PtAg(C CR)2L2](ClO4), which are believed to be salts, [Pt2Ag2(C CR)4L4](ClO4)2.  相似文献   

9.
The X‐ray crystal structures of [PtCl2(dppm)], [Pt(C6F5)2L] (L = dppm (bis(diphenylphosphino)methane), dpam (bis(diphenylarsino)methane), dpae (bis(diphenylarsino)ethane)) and [PtCl(C6F5)(dpae)] show the complexes to be monomeric with chelating dipnictido ligands, and not alternatives with bridging ligands. In [Pt(C6F5)2(dpam)2], there are two unidentate diarsine ligands in a cis‐arrangement.  相似文献   

10.
The reaction of [(C6H6)RuCl2]2 with 7,8-benzoquinoline and 8-hydroxyquinoline in methanol were performed. The obtained complexes have been studied by IR, UV–VIS, 1H and 13C NMR spectroscopy and X-ray crystallography. In the reaction with 8-hydroxyquinoline the arene ruthenium(II) complex oxidized to Ru(III). The electronic spectra of the obtained compounds have been calculated using the TDDFT method. Magnetic properties of [Ru(C9H6NO)3] · CH3OH complex suggest the antiferromagnetic coupling of the ruthenium centers in the crystal lattice. EPR spectrum of [Ru(C9H6NO)3] · CH3OH compound indicates single isotropic line only characteristic for Ru3+ with spin equal to 1/2.  相似文献   

11.
Nine mixed ligand ruthenium(II) vinylidene complexes with the general formula: [RuCl2{=C=CHR′}(PCy3)(L)] and [RuCl{=C=CHR′}(PCy3)(sal-R)] (L=N-heterocyclic carbene, sal-R=salicylaldiminate anion, R′=Ph, SiMe3, tBut) has been synthesized and characterized. These complexes are easily accessible from [RuCl2(p-cymene)]2, terminal alkynes, imidazolium salts or salicylaldimine salts and they have been found to serve as good catalyst precursors for ring-opening metathesis polymerization (ROMP) of norbornene, substituted norbornenes, polycyclic alkenes and cyclooctene and ring-closing metathesis (RCM) of ,ω-dienes. Furthermore, these precursors possess extremely high stability toward air, heat and moisture in comparison with other metathesis-active alkylidene ruthenium systems. No significant catalyst decomposition was found for several days at elevated temperatures.  相似文献   

12.
A series of new iridium complexes, IrCl(COD)(TMOPP) (1) [COD=1,5-cyclooctadiene, TMOPP=tris(4- methoxyphenyl)phosphine], IrCl(COD)(TFMPP) (2) [TFMPP = tris(4-trifluoromethylphenyl)phosphine], IrCl(COD)(BDNA) (3) [BDNA= 1,8-bis(diphenylphosphinomethyl)naphthalene], IrCl(COD)(BISBI) (4) [BISBI= 2,2'-bis(diphenylphosphinomethyl)biphenyl] and IrCl(COD)(BDPB) (5) [BDPB= 1,2-bis(diphenylphosphinomethyl)benzene], were synthesized and characterized by NMR spectra and elemental analyses. In order to obtain the relationships between complex structures and their catalytic properties, IrCl(COD)(DPPM) (6) [DPPM = bis(diphenylphosphino)methane], IrCl(COD)(DPPE) (7) [DPPE= 1,2-bis(diphenylphosphino)ethane], IrCl(COD)(DPPP) (8) [DPPP=1,3-bis(diphenylphosphino)propane] and IrCl(COD)(TPP) (9) [TPP=triphenylphosphine], were also synthesized according to the reported methods. The hydrogenation results showed that the low electronic density at the central metal was favorable to increase the catalytic activity for the hydrogenation of avermectin, but decrease the selectivity to ivermectin. The complex with a large chelating ring and a bulky chelating backbone would easily cause the cleavage of C-O bond in avermectin to give a byproduct avermectin aglycon.  相似文献   

13.
高氯酸铕的双亚砜配合物研究   总被引:2,自引:0,他引:2  
本文报告了高氯酸铕的高、低熔点双(正-辛基亚砜)乙烷和双(苯基亚砜)乙烷的四个配合物:Eu(ClO4)3(α-BOSE)3·2H2O(Ⅰ)、Eu(ClO4)3(β-BOSE)4·2H2O(Ⅱ)、Eu(ClO4)3(α-BPhSE)3(Ⅲ)和Eu(ClO4)3(β-BPhSE)4·2H2O(Ⅳ)的合成及性质。  相似文献   

14.
4-Vinyl pyridine (4-Vp) reacts with RuHClCO(PPh3)3 (I) in THF to give RuHClCO(PPh3)2(4-Vp) (II, which reacts with sodium derivatives of bidentate chelating ligands to afford substitution products, [RuH(CO)(PPh3)2(L)]. The bindentate ligands used are 2-hydroxybenzaldehyde, 2-hydroxy-3-methoxybenzaldehyde, trifluorothenoylacetone and 8-hydroxyquinoline. Insertion reactions of the Ru---H bond of II with activated olefins such as acrylonitrile [giving RuCl(CO)(CH3CHCN)(PPh3)2(4-Vp)], 2-vinyl pyridine, dimethyl fumarate and monobromodiethyl fumarate have been carried out to obtain chelated Ru---C bonded complexes. RuCl2(PPh3)3 reacts with an excess of 4-Vp to give an octahedral ruthenium addition complex containing two vinyl pyridine ligands. The dimer [RuClCO(CH3CHCN)(PPh3)(4-Vp)]2 is obtained by the reaction of [RuClCO(CH3CHCN)(PPh3)2]2 with an excess of 4-Vp. Stereochemical assignments have been made for these new complexes on the basis of IR and 1H NMR data.  相似文献   

15.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

16.
The monocyclooctatetraene uranium complex [U(COT)(I)2(THF)2] (COT=η-C8H8; THF=tetrahydrofuran), isolated from the reaction of bis(cyclooctatetraene)uranium with iodine, is a precursor for the synthesis of the alkyl derivatives [U(COT)(CH2Ph)2i (HMPA) 2], [U(COT)(CH2SiMe3)2(HMPA)] (HMPA=hexamethyl phosphorous triamide) and [U(COT)CH2SiMe3)3] [Li(THF)3] and of the mixed-ring compounds [U(COT)(η-C5R5)(I)] (R=H or Me). The last were used to prepare the amide and alkyl complexes [U(COT)(η-C5H5)(N{SiMe3}2)] and [U(COT)(η-C5Me5)(CH2SiMe3)].  相似文献   

17.
The reaction of bis(pyrazol-1-yl)methane tetracarbonylmolybdenum(0) or tungsten(0) complexes with RSnCl3 (R=Ph, Cl) at room temperature yielded heterobimetallic complexes CH2(Pz)2M(CO)3(Cl)(SnCl2R) (Pz represents substituted pyrazole; M=Mo or W; R=Ph or Cl) in good yields, which have been characterized by elemental analysis, 1H NMR and IR spectroscopy. The reaction of bis(3,5-dimethyl-4-halopyrazol-1-yl)methane tetracarbonyl tungsten with PhSnCl3 did not take place even in refluxing CH2Cl2. The electronic and steric characteristics of substituents on the pyrazole ring remarkably influence the structures of the products. The structures of CH2(3,5-Me2-4-BrPz)2W(CO)3(Cl)(SnCl3) (8) and CH2(4-BrPz)2Mo(CO)3(μ-Cl)(SnCl2Ph) (17) (Pz: pyrazole) determined by X-ray crystallography show that no chlorine-bridged W---Sn bond is observed in complex 8, while one chlorine-bridged Mo---Sn bond exists in complex 17. The Sn---M bond length is 2.7438(5) Å in complex 8 (W---Sn) and 2.7559(4) Å in complex 17 (Mo---Sn).  相似文献   

18.
The X-ray crystal structures of the four stable phenylhydroxylamines PhSO2NHOH, (PhSO2)2NOH,PhSO2NHOSO2Ph, (PhSO2)2NOSO2Ph), and of PhSO3+H3NHNS02Ph are presented. The last of these is a by-product obtained during the isolation of PhSO2NHOH (Piloty's Acid). The formation of and the bonding in these molecules are discussed.  相似文献   

19.
Reactions between three diorganodithiophosphinates and diphenylantimony(V) bromide oxide (SbPh2OBr)2, led to antimony reduction while dithiophosphinate oxidation followed a complex path varying in detail with the nature of the organic groups on dithiophosphinate. Antimony(III) dithiophosphinates, SbPh2(S2PR2) where R = Me, Et and Ph, have been isolated and characterised and an X-ray structure determination for the methyl derivative shows weakly associated dimers in the solid state, intermediate between those in (SbPh2S2PPh2)2 and [Sb(4-MeC6H4)2S2PEt]2.  相似文献   

20.
A number of isomeric N-benzylbenzalimine palladium(II) complexes of the type [P ·CH2Ph]2 (with C=N endo to the palladocycle) and [P =C(CH3Ph]2 (with C=N exo to the palladocycle), have been prepared and charcterised by 1H and 13C NMR methods. The crystal structures of two analogous monomeric acac complexes, synthesized independently by oxidative addition of o-BrC6H4CH2N=CH · Ph to Ph to Pd(dibenzylideneacetone)2 have also been determined. These are [P · CH2Ph)] (15a) and [P =CHPh)] (20a). Crystals of 15a are monoclinic, space group P21/a with Z = 4 in a cell of dimensions a 10.286(2), b 11.902(3), c 13.895(5) Å, β 93.52(2)° while 20a is monoclinic, space group P21/c with Z = 8 and a 10.353(3), b 20.600(5), c 16.545(7) Å, β 92.14(3)°. The structures 15a and 20a were refined to residuals R = 0.041 and 0.055 for 1661 and 2525 observed reflections respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号