首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five novel Cd(II) coordination polymers with three structurally related flexible disulfoxide ligands, [[Cd(L1)3](ClO4)2]n (1), [[Cd(L2)3](ClO4)2(CHCl3)]n (2), [Cd(L2)(NO3)2(H2O)]n (3), [Cd2(L3)2(NO3)4]n (4) and [[Cd(L3)3](ClO4)2]n (5), where L1= 1,3-bis(phenylsulfinyl)propane, L2= 1,4-bis(phenylsulfinyl)butane and L3= 1,4-bis(ethylsulfinyl)butane, were synthesized and structurally determined by X-ray diffraction. Complex 1 has a 2D layer structure, in which part of the L1 ligands bridge the Cd(II) ions to form double-bridging chains and the other part of ligands link such chains to form a 2D framework. Complexes 2 and 5 are isomorphous, showing unusual 2D (3,6) network structures containing triangular grids. Complex 3 adopts a 2D (4,4) network formed by L2 linking the NO3- bridged (Cd-O-N-O-)n 1D zigzag chains. By contrast, is a 1D chain, in which two Cd(II) centers are bridged by mu2-O of sulfoxide groups to form a dinuclear unit, and L3 ligands link such dinuclear units to form a 1D double-bridging chain. The structural differences among such complexes show that the ligand nature and counter anions have important influences on the complex structures, which may provide a rational method for controlling the framework formation in metal-organic coordination polymers.  相似文献   

2.
To observe anion impact on structural diversity of coordination architectures, three 1-D Ag(I) complexes with distinct features have been prepared, {[Ag(bpbib)2(NO3)]·C3NH9O)}n (1), [Ag2(bpbib)2·(BF4)2]n (2), and [Ag2(bpbib)2·(ClO4)2]n (3), by the reactions of 4,4′-bis((2-(pyridin-2-yl)-1H-benzo[d]imidazol-1-yl)methyl)biphenyl (bpbib) with Ag(I) salts. Complex 1 is a 1-D helical chain, whereas 2 and 3 bear ligand-unsupported Ag(I)···Ag(I) interaction-directed 1-D structural motif, with synergetic working of flexible organic linker and anions. All complexes exhibit strong triplet state emission at cryogenic temperatures, which profits from the reduction of nonradiative transitions.  相似文献   

3.
The hydrothermal reactions of pyridine-3,5-dicarboxylic acid (H2pydc) with AgNO3 in the mixed solvent of acetonitrile and water with different ratios lead to the formation of two three-dimensional network complexes, [Ag5(pydc)2(CN)]n (1) and {[Ag4(pydc)2]CH3CN}n (2), which have been characterized by IR, single-crystal X-ray diffraction and thermogravimetric analyses. It has been demonstrated that the ratio of acetonitrile and water have great effect on the structures of products. The high ratio of acetonitrile and water is favorable for the formation of complex 1, while the low volume ratio is propitious to complex 2. The luminescent properties of complex 1 and 2 have been further investigated, and show that the luminescence intensity of 2 is much stronger than that of 1 probably due to the direct metal-metal interactions and a larger HOMO-LUMO gap in complex 2.  相似文献   

4.
Novel triphenyl phosphine ligands bearing pyrazole or 2-aminopyrimidine groups in the ortho or meta position of one or three of the phenyl rings were obtained starting from the corresponding acyl derivatives Ph2P(o-C6H4-COCH3), Ph2P(m-C6H4-COCH3), or P(m-C6H4-COCH3)3. Conversion of the acyl groups into 3-dimethylamino-2-propen-1-onyl units was achieved by reaction with HC(OMe)2NMe2 which underwent ring closing with hydrazine or guanidine to yield the desired heterocycles. Two palladium complexes were synthesized using the coordinatively labile precursor (PhCN)2PdCl2, one of them could be characterized by X-ray structure analysis.  相似文献   

5.
Yang L  Houser RP 《Inorganic chemistry》2006,45(23):9416-9422
Copper(I) chloro complexes were synthesized with a family of ligands, HL(R) [HL(R) = N-(2-pyridylmethyl)acetamide, R = null; 2-phenyl-N-(2-pyridylmethyl)acetamide, R = Ph; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me3; 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph3)]. Five complexes were synthesized from the respective ligand and cuprous chloride: [Cu(HL)Cl]n (1), [Cu2(HL)4Cl2] (2), [Cu2(HL(Ph))2(CH3CN)2Cl2] (3), [Cu2(HL(Ph)3)2Cl2] (4), and [Cu(HL(Me)3)2Cl] (5). X-ray crystal structures reveal that for all complexes the ligands coordinate to the Cu in a monodentate fashion, and inter- or intramolecular hydrogen-bonding interactions formed between the amide NH group and either amide C=O or chloro groups stabilize these complexes in the solid state and strongly influence the structures formed. Complexes 1-5 display a range of structural motifs, depending on the size of the ligand substituent groups, hydrogen bonding, and the stoichiometry of the starting materials, including a one-dimensional coordination polymer chain (1) and binuclear (2-4) or mononuclear (5) structures.  相似文献   

6.
Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co(L1)2]n (1), [CuL1N3]n (2), [Cu(L2)2·0.5C2H5OH·H2O]n (3) and [Co(L2)2]n (4) (here, HL1=1H-imidazole-1-yl-acetic acid, HL2=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 44-sql topologies, while another 2D complex 1 has a (43)2(46)-kgd topology. And 2 is a 3D complex composed dinuclear μ1,1-bridging azido CuII entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied.  相似文献   

7.
A family of coordination polymers formed by the reaction of copper(I) iodide with a range of angular bidentate or tridentate N-donor ligands is reported. The framework polymers [CuI(dpt)](infinity) 1 [dpt = 2,4-bis(4-pyridyl)-1,3,5-triazine], [CuI(dpb)](infinity) 2 [dpb = 1,4-bis-(4-pyridyl)-benzene], [(CuI)3(dpypy)2](infinity) 3, [CuI(dpypy)](infinity) 4 [dpypy = 3,5-bis(4-pyridyl)-pyridine], and [Cu3I3(pypm)](infinity) 5 [pypm = 5-(4-pyridyl)pyrimidine] have been prepared and structurally characterized. It was found that the angular nature of the dpypy and dpt ligands favors the formation of discrete (CuI)2 dimeric subunits as observed in [CuI(dpt).MeCN](infinity) 1 and [(CuI)3(dpypy)2](infinity) 3. In contrast, reaction with the linear ligand dpb affords [CuI(dpb)](infinity) 2 which incorporates a one-dimensional (CuI)(infinity) chain structure. Moreover, the additional donor available on the central ring of the dpypy ligand generates a novel two-dimensional bilayer structure in 3, in contrast to the one-dimensional ribbon structure observed in the case of 1. Interestingly, the bilayer structure of 3 additionally exhibits 2-fold interpenetration. The reaction of CuI with dpypy produces not only 3 but a further product [CuI(dpypy)](infinity) 4 that has been characterized as a one-dimensional chain constructed from trigonal-planar Cu(I) centers bridged by bidentate dpypy ligands. Compound 5, [Cu3I3(pypm)](infinity), exhibits a highly unusual three-dimensional structure in which the pypm ligand bridges two-dimensional brick-wall (CuI)(infinity) sheets.  相似文献   

8.
9.
The alkyl chain-linked diimidazolium (or dibenzimidazolium) salts, 1,1′-diethyl-4,4′-tetramethylene-diimidazolium-diiodide (L1H2·I2) and 1,1′-diethyl-3,3′-trimethylene-dibenzimidazolium-diiodide (L2H2·I2), and their silver(I) and copper(II) coordination polymers, [L1AgI]n (1) and [L2Cu2I4]n (2), have been prepared and characterized. Complex 1 is a 1D helical polymer generated by bidentated carbene ligands (L1) and Ag(I) atoms. The 1D polymer of 2 is formed by bidentated carbene ligands (L2) and coplanar quadrilateral Cu2I2 units. 3D supramolecular frameworks in the crystal packings of 1 and 2 are formed via intermolecular weak interactions, including C–H···π contacts, ππ interactions and C–H···I hydrogen bonds.  相似文献   

10.
Solvothermal reactions of trans-stilbene-4,4'-dicarboxylic acid (H(2)STDC) and zinc(ii) acetate in the presence of systematically varied terminal ligands afforded a series of supramolecular architectures with formula [Zn(STDC)(py)(2)].py (1), [Zn(STDC)(bipy)(H(2)O)].0.5py.H(2)O (2), [Zn(STDC)(biql)] (3), [Zn(STDC)(phen)].solv (solv = DMSO, 4a; DMF, 4b), where py = pyridine, bipy = 2,2'-bipyridine, biql = 2,2'-biquinoline, phen = 1,10-phenathroline. X-Ray analyses revealed that all the compounds consist of infinite 1D zigzag polymer chains. Investigations based on intermolecular interactions illustrate that the chelate terminal ligands play a critical role in determining the packing/entangling modes of the chains and the porosity of the final three-dimensional architectures. In compounds 1 and 2, the weak hydrogen bonding and/or pi-pi stacking interactions assemble the parallel chains into diamond nets with four- and two-fold interpenetration, respectively. In compound 3, the hydrogen bonding and pi-pi stacking interactions collaborate to arrange the chains in two different directions, generating a 3D supramolecular architecture with high catenation. The most interesting packing occurs in 4. Extensive pi-pi stacking interactions involving the terminal and bridging ligands arrange the chains in four different directions, and the chains are hierarchically entangled to produce an unprecedented 3D microporous framework with high stability. Based on comparative investigations, the effects of the terminal and bridging ligands on the packing of zigzag chains have been discussed. The reversible guest inclusion properties of 2 and 4 have also been demonstrated.  相似文献   

11.
Three new Co(II) coordination polymers, [Co(L1)(bpdc)] n (1), [Co(L2)(ndc)(H2O)·2H2O] n (2) and [Co(L3)(ndc)(H2O)·H2O] n (3) (L1 = 1,2-bis(5,6-dimethylbenzimidazole)ethane, L2 = 1,3-bis(5,6-dimethylbenzimidazole)propane, L3 = 1,4-bis(5,6-dimethylbenzimidazole)butane, H2bpdc = 4,4′-biphenyldicarboxylic acid, H2ndc = 2,6-naphthalenedicarboxylic acid) have been synthesized under hydrothermal conditions and structurally characterized by X-ray crystallography. All three complexes feature (4,4) networks that extend into 3D supramolecular frameworks via hydrogen bonding interactions. The luminescence properties and catalytic activities of these complexes with respect to the degradation of methyl orange in a Fenton-like process have been investigated.  相似文献   

12.
Two new (NS)2 Schiff bases, (4-NO2Ph)2dapte (N,N′-di-(4-nitrobenzaldimine)-1,2-di(o-aminophenylthio)ethane) (1) and (thio)2daptx (N,N′-di-(thiophenedimine)-1,4-di(o-aminophenylthio)xylene) (2), and their 1-D copper(I) coordination polymers [Cu2(μ-Br)2(μ-(4-NO2Ph)2dapte)] n (3), [Cu2(μ-I)2(μ-(4-NO2Ph)2dapte)] n (4), and [Cu2(μ-I)2(μ-(thio)2daptx)] n (5) have been synthesized and characterized by elemental analyses and IR, UV-Vis, and 1H NMR spectroscopy. The structures of 4 and 5 have been determined by X-ray crystallography and were shown to consist of Cu2(μ-I)2 secondary building units (SBUs) bridged by (4-NO2Ph)2dapte or (thio)2daptx ligands. The CuNSI2 coordination sphere is a distorted tetrahedral in both cases. Both (4-NO2Ph)2dapte and (thio)2daptx are N2S2-bis-bidentate chelating ligands with the two imine nitrogens and two thioether sulfurs in a trans configuration generating dinuclear [Cu2(μ-(4-NO2Ph)2dapte)] and [Cu2(μ-(thio)2daptx)]. These units are connected by two bridging iodides to form 1-D copper(I) coordination polymers. The electrochemical properties of 35 are also reported and discussed.  相似文献   

13.
The ligands 1,4-bis(2-pyridylmethylsulfanylmethyl)benzene (L1) and 2,5-bis(2-pyridylmethylsulfanylmethyl)pyrazine (L2) were treated with Cd(NO3)2.4H2O in metal-to-ligand ratios of 1:1 and 2:1, respectively; L2 was also treated with CdCl2.2.5H2O in a 2:1 ratio. All products were found to be coordination polymers. The crystal structures of {[Cd(L1)(NO3)2].CH2Cl2}infinity (1a), {[Cd(L1)(NO3)2].4/3CH3CN}infinity (1b), {[Cd2(L2)(NO3)4].2CH3CN}infinity (2.2CH3CN), and {[Cd2(L2)Cl4].2CH2Cl2}infinity (3.2CH2Cl2) were determined. Compounds 1a and 1b were found to be conformational supramolecular isomers. The structure of 1b displayed topological isomerism with two isomeric polymer chains, 1b(1) and 1b(2), in the one crystal forming a single supramolecular array. The structure of 2.2CH(3)CN showed Cd2(L2) units linked together by nitrates bridging between the Cd(II) centers in a mode previously not seen in Cd(II) compounds. The overall structure of 3.2CH2Cl2 was found to be similar to that of 2.2CH3CN despite the presence of different anions and solvent molecules. Powder X-ray diffraction was used to investigate the nature of bulk preparations of compounds 1-3.  相似文献   

14.
《Solid State Sciences》2012,14(4):419-425
In our efforts to investigate the influence of the backbone of different triazole-based bridging ligands on the structure of their metal complexes, four new coordination polymers, {[Cu(L1)2(H2O)2]Cl2}n (1), [Cu(L2)2Cl2]n (2), [Co(L2)2(SCN)2]n (3), and [Cu(L3)2(NO3)2]n (4), (L1 = 1,2-bis(triazol-1-ylmethyl)benzene, L2 = 1,3-bis(triazol-1-ylmethyl)benzene, L3 = 1,4-bis(triazol-1-ylmethyl)benzene), have been synthesized. All the complexes have been structurally characterized by IR, elemental analysis and single-crystal X-ray diffraction. Structural analyses show that 1 and 4 possess 2D coordination networks with (4,4) topology, and 1 shows a diagonal–diagonal inclined interpenetration. 2 and 3 are isostructural and feature 1D double chain, which further connected by C–H···Cl or π···π weak interactions to form 2D supramolecular frameworks. The results show that the structures of ligands (with different non-coordination backbone spacers) play important roles in the formation of such coordination architectures. Furthermore, EPR (Electron Paramagnetic Resonance) spectra of CuII complexes (1, 2, and 4) have been investigated in the solid state at room temperature.  相似文献   

15.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

16.
Five mixed ligands coordination polymers [Ag4(apym)2(pma)·(H2O)2]n (1), {[Ag4(dmapym)4(pma)·(H2O)2]·(H2O)6}n (2), [Ag2(apyz)2(H2pma)·(H2O)4]n (3), {[Ag4(apyz)2(pma)·(H2O)2]·(H2O)2}n (4) and [Ag4(NH3)8(pma)·(H2O)6]n (5) (apym = 2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, apyz = 2-aminopyrazine, H4pma = pyromellitic acid) were synthesized and characterized. For 1 and 2, as the substituents change from H to methyl, the dimensions of 12 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 3 and 4, as the ratios of Ag2O/apyz/pma vary from 1:1:1 to 2:1:1, the structure of 3 is a 1D ladder structure built from Ag-apyz double chains and pma anions, while the structure of 4 is a two-dimension (2D) grid. As excess ammonia is added to above four reaction systems, the structure of 5 contains unprecedented {[Ag(NH3)2]+}n chains and pma anions. The substituent on the pyrimidyl ring, ratios of reactants, solvent systems and ligand isomers intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the coordination polymers. The photoluminescent properties of 15 were also investigated.  相似文献   

17.
Yi B  Fan QH  Deng GJ  Li YM  Qiu LQ  Chan AS 《Organic letters》2004,6(9):1361-1364
[reaction: see text] A series of dendritic ligands with a chiral diphosphine located at the focal point have been synthesized through coupling of pyrphos 2 with Fréchet-type polyether dendron 3. The relationship between the primary structure of the dendrimer and its catalytic properties was established in the Rh-catalyzed asymmetric hydrogenation of alpha-acetamido cinnamic acid 4. A remarkable structural effect on catalytic activity was observed.  相似文献   

18.
We present here two ligand classes based on a bis(pyrazolyl)methane scaffold functionalized with a rigid (-Ph-S-Ph) or flexible (-CH(2)-S-Ph) thioether function: L(R)PhS (R = H, Me) and L(R)CH(2)S (R = H, Me, iPr). The X-ray molecular structures of Ag(I) and Cu(I) binary complexes with L(R)PhS or L(R)CH(2)S using different types of counterions (BF(4)(-), PF(6)(-), and CF(3)SO(3)(-)) are reported. In these complexes, the ligands are N(2) bound on a metal center and bridge on a second metal with the thioether group. In contrast, when using triphenylphosphine (PPh(3)) as an ancillary ligand, mononuclear ternary complexes [M(L)PPh(3)](+) (M = Cu(I), Ag(I); L = L(R)PhS, L(R)CH(2)S) are formed. In these complexes, the more flexible ligand type, L(R)CH(2)S, is able to provide the N(2)S chelation, whereas the more rigid L(R)PhS ligand class is capable of chelating only N(2) because the thioether function preorganized, as it did in the coordination polymers, to point away from the metal center. Rigid potential-energy surface scans were performed by means of density functional theory (DFT) calculations (B3LYP/6-31+G) on the two representative ligands, L(H)PhS and L(H)CH(2)S. The surface scans proved that the thioether function is preferably oriented on the opposite side of the bispyrazole N(2) chelate system. These results confirm that both ligand classes are suitable components for the construction of coordination polymers. Nevertheless, the methylene group that acts as a spacer in L(H)CH(2)S imparts an inherent flexibility to this ligand class so that the conformation responsible for the N(2)S chelation is energetically accessible.  相似文献   

19.
The valences of metal ions were found to play key roles in controlling the formation and structures of discrete coordination architectures in a copper and disk-shaped hexa-monodentate ligand system. When Cu(I) and Cu(II) ions react with a polydentate ligand HPDQ, a hexanuclear "double-decker" like discrete "LM(3)M(3)L" coordination architecture (CuI)(6)(HPDQ)(2)(CHCl(3))(8) (complex 1), and a "LM(3)L + LM(3)" composite structure complex (Cu(NO(3))(2))(6)(HPDQ)(3) (complex 2) are formed, respectively.  相似文献   

20.
Two novel, neutral, octanuclear copper(I) complexes displaying twisted-boat Cu(8) conformations and short Cu-Cu interactions have been synthesized from hydrothermal reactions; the complexes show unusual multiple band emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号