首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LetH N be the 2N particle Hamiltonian $$\begin{array}{*{20}c} {H_N = \sum\limits_{i = 1}^{2N} {( - \Delta _\iota ) + \sum\limits_{i< j = 1}^N {\left| {x_i - x_j } \right|^{ - 1} + } \sum\limits_{i< j = 1}^N {\left| {x_{i + N} - x_{j + N} } \right|^{ - 1} } } } \\ { - \sum\limits_{i,j< j = 1}^N {\left| {x_i - x_{j + N} } \right|^{ - 1} ,} } \\ \end{array} $$ whereΔ i is the Laplacian in the variablex i ∈?3, 1≦i≦2N. The operatorH N is assumed to act on wave functionsΨ(x 1, ...,x N ;x N+1, ...,x 2N ) which are symmetric in the variables (x 1, ...,x N ) and (x N+1, ...,x 2N ). SupposeΨ is supported in a setΛ 2N , whereΛ is a cube in ?3. It is shown that if a normalized wave functionΨ can be written as a product of two wave functions $$\psi (x_1 ,...,x_N ;x_{N + 1} ,...,x_{2N} ) = \psi _1 (x_2 ,...,x_N )\psi _2 (x_{N + 1} ,...,x_{2N} ),$$ and the density of particles inΛ is constant, then 〈Ψ|H N |Ψ〉≧?CN 7/5 for some universal constantC.  相似文献   

2.
In this paper we study the ground state energy of a classical gas. Our interest centers mainly on Coulomb systems. We obtain some new lower bounds for the energy of a Coulomb gas. As a corollary of our results we can show that a fermionic system with relativistic kinetic energy and Coulomb interaction is stable. More precisely, letH N (α) be theN particle Hamiltonian $$H_N (\alpha ) = \alpha \sum\limits_{i = 1}^N {( - \Delta _i )^{1/2} + } \sum\limits_{i< j} {\left| {x_i - x_j } \right|^{ - 1} } - \sum\limits_{i,j} {\left| {x_i - R_j } \right|^{ - 1} } + \sum\limits_{i< j} {\left| {R_i - R_j } \right|^{ - 1} } $$ where Δ i is the Laplacian in the variablex i ∈?3 andR 1, ...,R N are fixed points in ?3. We show that for sufficiently large α, independent ofN, the HamiltonianH N (α) is nonnegative on the space of square integrable functions ψ(x 1, ...,x N ), antisymmetric in the variablesx i , 1≦iN.  相似文献   

3.
The quantum-statistical properties of states of an electromagnetic field of general superpositions of coherent states of the form of N α,β(α?+e iξ β? are investigated. Formulas for the fluctuations (variances) of Hermitian trigonometric phase field operators ? ≡ côs φ, ? ≡ sîn φ (the so-called “Susskind–Glogower operators”) are found. Expressions for the rigorous uncertainty relations (Cauchy inequalities) for operators of the number of photons and trigonometric phase operators, as well as for operators ? and ?, are found and analyzed. The states of amplitude \({N_{\alpha ,\beta }}\left( {\left| {{{\sqrt {ne} }^{i\varphi }}\rangle + {e^{i\xi }}\left| {{{\sqrt {{n_\beta }e} }^{i\varphi }}\rangle } \right.} \right.} \right)\), φ = φα = φβ, and phase \({N_{\alpha ,\beta }}\left( {\left| {{{\sqrt {ne} }^{i{\varphi _\alpha }}}\rangle + {e^{i\xi }}\left| {{{\sqrt {ne} }^{i{\varphi _\beta }}}\rangle } \right.} \right.} \right)\), n = n α = n β, superpositions of coherent states are considered separately. The types of quantum superpositions of meso- and macroscales (n α, n β » 1) are found for which the sines and/or cosines of the phase of the field can be measured accurately, since, under certain conditions, the quantum fluctuations of these quantities are close to zero. A simultaneous accurate measurement of cosφ and sinφ is possible for amplitude superpositions, while an accurate measurement of one of these trigonometric phase functions is possible in the case of certain phase superpositions. Amplitude superpositions of coherent states with a vacuum state are quantum states of the field with a “maximum” level of the quantum uncertainty both in the case of a mesoscopic scale and in the case of a macroscopic scale of the field with an average number of photons n α/β ≈ 0, n β/α » 1.  相似文献   

4.
We consider the canonical Gibbs measure associated to aN-vortex system in a bounded domain Λ, at inverse temperature \(\widetilde\beta \) and prove that, in the limitN→∞, \(\widetilde\beta \) /N→β, αN→1, where β∈(?8π, + ∞) (here α denotes the vorticity intensity of each vortex), the one particle distribution function ?N = ? N x,x∈Λ converges to a superposition of solutions ? α of the following Mean Field Equation: $$\left\{ {\begin{array}{*{20}c} {\varrho _{\beta (x) = } \frac{{e^{ - \beta \psi } }}{{\mathop \smallint \limits_\Lambda e^{ - \beta \psi } }}; - \Delta \psi = \varrho _\beta in\Lambda } \\ {\psi |_{\partial \Lambda } = 0.} \\ \end{array} } \right.$$ Moreover, we study the variational principles associated to Eq. (A.1) and prove thai, when β→?8π+, either ?β → δ x 0 (weakly in the sense of measures) wherex 0 denotes and equilibrium point of a single point vortex in Λ, or ?β converges to a smooth solution of (A.1) for β=?8π. Examples of both possibilities are given, although we are not able to solve the alternative for a given Λ. Finally, we discuss a possible connection of the present analysis with the 2-D turbulence.  相似文献   

5.
We show how to prove and to understand the formula for the “Pontryagin” indexP for SU(N) gauge fields on the HypertorusT 4, seen as a four-dimensional euclidean box with twisted boundary conditions. These twists are defined as gauge invariant integers moduloN and labelled byN μv (=?N μv ). In terms of these we can write (ν∈#x2124;) $$P = \frac{1}{{16\pi ^2 }}\int {Tr(G_{\mu v} \tilde G_{\mu v} )d_4 x = v + \left( {\frac{{N - 1}}{N}} \right) \cdot \frac{{n_{\mu v} \tilde n_{\mu v} }}{4}} $$ . Furthermore we settle the last link in the proof of the existence of zero action solutions with all possible twists satisfying \(\frac{{n_{\mu v} \tilde n_{\mu v} }}{4} = \kappa (n) = 0(\bmod N)\) for arbitraryN.  相似文献   

6.
In this paper we want to give a new definition of fractal dimensions as small scale behavior of theq-energy of wavelet transforms. This is a generalization of previous multi-fractal approaches. With this particular definition we will show that the 2-dimension (=correlation dimension) of the spectral measure determines the long time behavior of the time evolution generated by a bounded self-adjoint operator acting in some Hilbert space ?. It will be proved that for φ, ψ∈? we have $$\mathop {\lim \inf }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ + (2)$$ and that $$\mathop {\lim \sup }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ - (2),$$ wherek ±(2) are the upper and lower correlation dimensions of the spectral measure associated with ψ and ?. A quantitative version of the RAGE theorem shall also be given.  相似文献   

7.
We obtain computable upper bounds for any given Mayer graph withn root-points (orn-graph). These are products of integrals of the type \(\left( {\int {\left| {f_L } \right|^{z_{iL} y_i^{ - 1} } dx} } \right)^{yi} \) , where thez iL andy i are nonnegative real numbers whose sum overi is equal to 1. As a particular case, we obtain the canonical bounds (see their definition in Section 2.2): $$\left| {\int {\prod\limits_L {f_L \left( {x_i ,x_j } \right)dx_{n + 1} \cdot \cdot \cdot dx_{n + k} } } } \right| \leqslant \prod\limits_L {\left( {\int {\left| {f_L } \right|^{\alpha _L } dx} } \right)^{\alpha _L^{ - 1} } } $$ where theα L 's satisfy the conditionα L ≥1 for anyL, and ∑ L α L ?1 =k (k is the number of variables that are integrated over). These bounds are finite for alln-graphs of neutral systems. We obtain also finite bounds for all irreduciblen-graphs of polar systems, and for certainn-graphs occurring in the theory of ionized systems. Finally, we give a sufficient condition for an arbitraryn-graph to be finite.  相似文献   

8.
We use an effective criterion based on the asymptotic analysis of a class of Hamiltonian equations to determine whether they are linearizable on an abelian variety, i.e., solvable by quadrature. The criterion is applied to a system with Hamiltonian $$H = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\sum\limits_{i = 1}^l {p_i^2 } + \sum\limits_{i = 1}^{l + 1} {\exp \left( {\sum\limits_{j = 1}^l {N_{ij} x_j } } \right)} ,$$ parametrized by a real matrixN=(N ij ) of full rank. It will be solvable by quadrature if and only if for allij, 2(N NT) ij (N N T ) jj ?1 is a nonpositive integer, i.e., the interactions correspond to the Toda systems for the Kac-Moody Lie algebras. The criterion is also applied to a system of Gross-Neveu.  相似文献   

9.
For a large class of generalizedN-body-Schrödinger operators,H, we show that ifE<Σ=infσess(H) and ψ is an eigenfunction ofH with eigenvalueE, then $$\begin{array}{*{20}c} {\lim } \\ {R \to \infty } \\ \end{array} R^{ - 1} \ln \left( {\int\limits_{S^{n - 1} } {|\psi (R\omega )|} ^2 d\omega } \right)^{1/2} = - \alpha _0 ,$$ with α 0 2 +E a threshold. Similar results are given forE≧Σ.  相似文献   

10.
We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain ${\Omega\subset\mathbb{R}^2}We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain W ì \mathbbR2{\Omega\subset\mathbb{R}^2} , which is not necessarily simply connected. On an arbitrary bounded domain we obtain new equilibria for N = 3 or N = 4. If Ω has an axial symmetry we obtain a symmetric equilibrium for each N ? \mathbbN{N\in\mathbb{N}} . We also obtain new stream functions solving the sinh-Poisson equation -Dy = rsinhy{-\Delta\psi=\rho\sinh\psi} in Ω with Dirichlet boundary conditions for ρ > 0 small. The stream function yr{\psi_\rho} induces a stationary velocity field vr{v_\rho} solving the Euler equation in Ω. On an arbitrary bounded domain we obtain velocitiy fields having three or four counter-rotating vortices. If Ω has an axial symmetry we obtain for each N a velocity field vr{v_\rho} that has a chain of N counter-rotating vortices, analogous to the Mallier-Maslowe row of counter-rotating vortices in the plane. Our methods also yield new nodal solutions for other semilinear Dirichlet problems, in particular for the Lane-Emden-Fowler equation -Du=|u|p-1u{-\Delta u=|u|^{p-1}u} in Ω with p large.  相似文献   

11.
For a particular class of patching matrices onP 3(?), including those for the complex instanton bundles with structure group Sp(k,?) orO(2k,?), we show that the associated Riemann-Hilbert problemG(x, λ)=G?(x, λ)·G + ?1 (x, λ) can be generically solved in the factored formG ?=φ 1 φ 2.....φ n . IfГ=Г n is the potential generated in the usual way fromG ?, and we setψ i =φ 1.....,φ i withψ n =G ?, then eachψ i also generates a selfdual gauge potentialΓ i . The potentials are connected via the “dressing transformations” $$\Gamma _\iota = \phi _i^{ - 1} \cdot \Gamma _{\iota - 1} \cdot \phi _i + \phi _i ^{ - 1} D\phi _i$$ of Zakharov-Shabat. The factorization is not unique; it depends on the (arbitrary) ordering of the poles of the patching matrix.  相似文献   

12.
We present a detailed study of the mass spectrum of SQCD in the vector, axial vector, Goldstone and flavour-singlet channels in the caseN c =M F by means of SVZ sum rules in their finite energy version. Our analysis constrains the relative strength of the two independent scalar condensates, φ+φ> and \(\left\langle {\tilde \phi \phi } \right\rangle \) .  相似文献   

13.
Based on the chiral perturbation theory, we investigate the low-energy dynamics of nucleon parton distributions. We show that in different regions of the momentum fraction x the chiral expansion is significantly different. For nucleon parton distributions these regions are characterized by x ~ 1, x ~ m π /M N and \({x \sim (m_{\pi}/M_{N})^2}\) . We derive extended counting rules for each region and obtain model-independent results for the nucleon parton distributions down to \({x \gtrsim m^{2}_{\pi}/M^2_{N} \approx 10^{-2} }\) .  相似文献   

14.
In this report the extraction of the η , $ \eta{^\prime}$ mixing angle and of the $ \eta{^\prime}$ gluonium content from the R φ = Br(φ(1020) → $ \eta{^\prime}$ γ)/Br(φ(1020) → ηγ) is updated. The $ \eta{^\prime}$ gluonium content is estimated by fitting R φ , together, with other decay branching ratios. The extracted parameters are: Z 2 G = 0.12±0.04 and ?P = (40.4±0.9)° .  相似文献   

15.
We study for which left invariant diagonal metrics λ onSO(N), the Euler-Arnold equations $$\dot X = [x,\lambda (X)], X = (x_{ij} ) \in so(N), \lambda _{ij} x_{ij} , \lambda _{ij} = \lambda _{ji} $$ can be linearized on an abelian variety, i.e. are solvable by quadratures. We show that, merely by requiring that the solutions of the differential equations be single-valued functions of complex timet∈?, suffices to prove that (under a non-degeneracy assumption on the metric λ) the only such metrics are those which satisfy Manakov's conditions λ ij =(b i ?b j ) (a i ?a j )?1. The case of degenerate metrics is also analyzed. ForN=4, this provides a new and simpler proof of a result of Adler and van Moerbeke [3].  相似文献   

16.
The general theory of inhomogeneous mean-field systems of Raggio and Werner provides a variational expression for the (almost sure) limiting free energy density of the Hopfield model $$H_{N,p}^{\{ \xi \} } (S) = - \frac{1}{{2N}}\sum\limits_{i,j = 1}^N {\sum\limits_{\mu = 1}^N {\xi _i^\mu \xi _j^\mu S_i S_j } } $$ for Ising spinsS i andp random patterns ξμ=(ξ 1 μ 2 μ ,...,ξ N μ ) under the assumption that $$\mathop {\lim }\limits_{N \to \gamma } N^{ - 1} \sum\limits_{i = 1}^N {\delta _{\xi _i } = \lambda ,} \xi _i = (\xi _i^1 ,\xi _i^2 ,...,\xi _i^p )$$ exists (almost surely) in the space of probability measures overp copies of {?1, 1}. Including an “external field” term ?ξ μ p hμμξ i=1 N ξ i μ Si, we give a number of general properties of the free-energy density and compute it for (a)p=2 in general and (b)p arbitrary when λ is uniform and at most the two componentsh μ1 andh μ2 are nonzero, obtaining the (almost sure) formula $$f(\beta ,h) = \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } + h^{\mu _2 } ) + \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } - h^{\mu _2 } )$$ for the free energy, wheref cw denotes the limiting free energy density of the Curie-Weiss model with unit interaction constant. In both cases, we obtain explicit formulas for the limiting (almost sure) values of the so-called overlap parameters $$m_N^\mu (\beta ,h) = N^{ - 1} \sum\limits_{i = 1}^N {\xi _i^\mu \left\langle {S_i } \right\rangle } $$ in terms of the Curie-Weiss magnetizations. For the general i.i.d. case with Prob {ξ i μ =±1}=(1/2)±?, we obtain the lower bound 1+4?2(p?1) for the temperatureT c separating the trivial free regime where the overlap vector is zero from the nontrivial regime where it is nonzero. This lower bound is exact forp=2, or ε=0, or ε=±1/2. Forp=2 we identify an intermediate temperature region between T*=1?4?2 and Tc=1+4?2 where the overlap vector is homogeneous (i.e., all its components are equal) and nonzero.T * marks the transition to the nonhomogeneous regime where the components of the overlap vector are distinct. We conjecture that the homogeneous nonzero regime exists forp≥3 and that T*=max{1?4?2(p?1),0}.  相似文献   

17.
We prove that the spectrum of the discrete Schrödinger operator on ?2(?2)
$$\begin{array}{@{}rcl@{}} (\psi _{n,m})\mapsto -(\psi _{n + 1,m} +\psi _{n-1,m} + \psi _{n,m + 1} +\psi _{n,m-1})+V_{n}\psi _{n,m} \ , \\ \quad (n, m) \in \mathbb {Z}^{2},\ \left \{ V_{n}\right \}\in \ell ^{\infty }(\mathbb {Z}) \end{array} $$
(1)
is absolutely continuous.
  相似文献   

18.
If for a relativistic field theory the expectation values of the commutator (Ω|[A (x),A(y)]|Ω) vanish in space-like direction like exp {? const|(x-y 2|α/2#x007D; with α>1 for sufficiently many vectors Ω, it follows thatA(x) is a local field. Or more precisely: For a hermitean, scalar, tempered fieldA(x) the locality axiom can be replaced by the following conditions 1. For any natural numbern there exist a) a configurationX(n): $$X_1 ,...,X_{n - 1} X_1^i = \cdot \cdot \cdot = X_{n - 1}^i = 0i = 0,3$$ with \(\left[ {\sum\limits_{i = 1}^{n - 2} {\lambda _i } (X_i^1 - X_{i + 1}^1 )} \right]^2 + \left[ {\sum\limits_{i = 1}^{n - 2} {\lambda _i } (X_i^2 - X_{i + 1}^2 )} \right]^2 > 0\) for all λ i ≧0i=1,...,n?2, \(\sum\limits_{i = 1}^{n - 2} {\lambda _i > 0} \) , b) neighbourhoods of theX i 's:U i (X i )?R 4 i=1,...,n?1 (in the euclidean topology ofR 4) and c) a real number α>1 such that for all points (x):x 1, ...,x n?1:x i U i (X r ) there are positive constantsC (n){(x)},h (n){(x)} with: $$\left| {\left\langle {\left[ {A(x_1 )...A(x_{n - 1} ),A(x_n )} \right]} \right\rangle } \right|< C^{(n)} \left\{ {(x)} \right\}\exp \left\{ { - h^{(n)} \left\{ {(x)} \right\}r^\alpha } \right\}forx_n = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ r \\ \end{array} } \right),r > 1.$$ 2. For any natural numbern there exist a) a configurationY(n): $$Y_2 ,Y_3 ,...,Y_n Y_3^i = \cdot \cdot \cdot = Y_n^i = 0i = 0,3$$ with \(\left[ {\sum\limits_{i = 3}^{n - 1} {\mu _i (Y_i^1 - Y_{i{\text{ + 1}}}^{\text{1}} } )} \right]^2 + \left[ {\sum\limits_{i = 3}^{n - 1} {\mu _i (Y_i^2 - Y_{i{\text{ + 1}}}^{\text{2}} } )} \right]^2 > 0\) for all μ i ≧0,i=3, ...,n?1, \(\sum\limits_{i = 3}^{n - 1} {\mu _i > 0} \) , b) neighbourhoods of theY i 's:V i(Y i )?R 4 i=2, ...,n (in the euclidean topology ofR 4) and c) a real number β>1 such that for all points (y):y 2, ...,y n y i V i (Y i there are positive constantsC (n){(y)},h (n){(y)} and a real number γ(n){(y)∈a closed subset ofR?{0}?{1} with: γ(n){(y)}\y 2,y 3, ...,y n totally space-like in the order 2, 3, ...,n and $$\left| {\left\langle {\left[ {A(x_1 ),A(x_2 )} \right]A(y_3 )...A(y_n )} \right\rangle } \right|< C_{(n)} \left\{ {(y)} \right\}\exp \left\{ { - h_{(n)} \left\{ {(y)} \right\}r^\beta } \right\}$$ for \(x_1 = \gamma _{(n)} \left\{ {(y)} \right\}r\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} } \right),x_2 = y_2 - [1 - \gamma _{(n)} \{ (y)\} ]r\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} } \right)\) and for sufficiently large values ofr.  相似文献   

19.
In a previous paper we investigated a class ofnonpeeling asymptotic vacuum solutions which were shown to admit finite expressions for the Winicour-Tamburino energy-momentum and angular momentum integrals. These solutions have the property that $$\psi _0 = O(r^{ - 3 - \in _0 } ), \in _0 \leqslant 2$$ and $$\psi _1 = O(r^{ - 3 - \in _1 } ), \in _1< \in _0 and \in _1< 1$$ withψ 2,ψ 3, andψ 4 having the same asymptotic behavior as they do for peeling solutions. The above investigation was carried out in the physical space-time. In this paper we examine the conformal properties of these solutions, as well as the more general Couch-Torrence solutions, which include them as a subclass. For the Couch-Torrence solutions $$\begin{gathered} \psi _0 = O(r^{ - 2 - \in _0 } ) \hfill \\ \psi _1 = O(r^{ - 2 - \in _1 } ), \in _1< \in _0 {\text{ }}and \in _1 \leqslant 2 \hfill \\ \end{gathered} $$ and , $$\psi _2 = O(r^{ - 2 - \in _2 } ),{\text{ }} \in _2< \in _1 {\text{ }}and \in _2 \leqslant 1$$ withψ 3 andψ 4 behaving as they do for peeling solutions. It is our purpose to determine how much of the structure generally associated with peeling space-times is preserved by the nonpeeling solutions. We find that, in general, a three-dimensional null boundary (?+) can be defined and that the BMS group remains the asymptotic symmetry group. For the general Couch-Torrence solutions several physically and/or geometrically interesting quantities  相似文献   

20.
In some applications (especially in the filed of control theory) the characteristic equation of system contains fractional powers of the Laplace variable s possibly in combination with exponentials of fractional powers of s. The aim of this paper is to propose an easy-to-use and effective formula for bounded-input boundedoutput (BIBO) stability testing of a linear time-invariant system with fractional-delay characteristic equation in the general form of $\Delta \left( s \right) = P_0 \left( s \right) + \sum\nolimits_{i = 1}^N {P_i \left( s \right)\exp ( - \zeta _i s^{\beta _i } ) = 0}$ , where P i (s) (i = 0,...,N) are the so-called fractional-order polynomials and ξ i and β i are positive real constants. The proposed formula determines the number of the roots of such a characteristic equation in the right half-plane of the first Riemann sheet by applying Rouche’s theorem. Numerical simulations are also presented to confirm the efficiency of the proposed formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号