首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The type and topology of hydrogen-bonded molecular clusters of water are investigated by the molecular dynamics method for five models of water in supercritical conditions. Small clusters (of the order of 10 molecules) are present in all models, even at densities of less than 0.2g/cm3. When the density increases, a phase transition occurs from vapor-like to fluid-like state. Among small clusters, linear structures are predominant.  相似文献   

2.
Dispersion stability of colloids has been investigated in sub- and supercritical water by measuring the hydrodynamic diffusion coefficients of the particles by means of dynamic light scattering. It is interestingly found that coagulation of the colloids in sub- and supercritical water is a universal phenomenon irrespective of the material of the colloids. Highly charged colloids were found to be more stable in water against high temperature. Numerical analysis reveals that the stability of the colloids at elevated temperature and pressure is primarily governed by the temperature dependence of the dielectric constant of the medium. The effect of the temperature dependence of the ion product of water (pKw) was found to be very little. Surface charge density and Stern potential may change with respect to temperature due to the readjustment of the ion concentration in the diffuse layer through the enhanced ion product and reduced dielectric constant of water. These are the secondary causes of the particle coagulations in sub- and supercritical water.  相似文献   

3.
Uncatalyzed partial oxidation of p-xylene in sub- and supercritical water   总被引:1,自引:0,他引:1  
In sub- and supercritical water, partial oxidation of p-xylene was performed in a batch reactor without a catalyst at 240-500oC, 220-300 bar. The loaded amount of hydrogen peroxide was set to 0-100% of the theoretically required oxygen amount. Conversion of p-xylene was reached over 99% within 15-20 min. In sub- and supercritical water, we propose two parallel pathways and major products that consist of p-tolualdehyde, p-toluic acid, terephthalic acid, toluene and benzaldehyde. Yields of major products in subcritical conditions were higher than in a supercritical conditions.  相似文献   

4.
Liquefaction of tar from oil distillation was studied under sub- and supercritical water conditions using a batch reactor at 623 and 673 K and 25-40 MPa. The reaction scheme for tar liquefaction was determined as follows: the liquefaction process of tar occurs first and then intermediate chemical compounds are transformed into lighter molecular weight species. The effects of pressure and treatment time were combined into a single severity parameter that was used to monitor the conversion of tar. The main products from the liquefaction of tar were phenol (3.44 wt%), biphenyl (2.23 wt%), diphenylether (13.70 wt%) and diphenylmethane (1.30 wt%), respectively. Liquefaction of tar clearly increased with increasing water density at the same temperature reaction. It indicates that hydrolysis was important in the cleavage of the macromolecular structure of tar under sub- and supercritical conditions. Based on the results, this method could become an efficient method for tar liquefaction, producing high yields of valuable chemical intermediates.  相似文献   

5.
The hydration structures and dynamics of phenol in aqueous solution at infinite dilution are investigated using molecular-dynamics simulation technique. The simulations are performed at several temperatures along the coexistence curve of water up to the critical point, and above the critical point with density fixed at 0.3 g/cm3. The hydration structures of phenol are characterized using the radial, cylindrical, and spatial distribution functions. In particular, full spatial maps of local atomic (solvent) density around a solute molecule are presented. It is demonstrated that in addition to normal H bonds with hydroxyl group of phenol, water forms pi-type complexes with the center of the benzene ring, in which H2O molecules act as H-bond donor. At ambient conditions phenol is solvated by 38 water molecules, which make up a large hydrophobic cavity, and forms on average 2.39 H bonds (1.55 of which are due to the hydroxyl group-water interactions and 0.84 are due to the pi complex) with its hydration shell. As temperature increases, the hydration structure of phenol undergoes significant changes. The disappearance of the pi-type H bonding is observed near the critical point. Self-diffusion coefficients of water and phenol are also calculated. Dramatic increase in the diffusivity of phenol in aqueous solution is observed near the critical point of simple point-charge-extended water and is related to the changes in water structure at these conditions.  相似文献   

6.
7.
Molecular dynamic simulation of water under sub- and supercritical conditions was performed with a new form of O···H pairwise potential with an additional non-electrostatic term corresponding hydrogen bond formation. Some structural properties of water and hydrogen bonds characteristics were calculated in a wide temperature range and pressure 50 MPa. Dependences of these values on temperature were analyzed.  相似文献   

8.
The environmentally important interaction products of trimethylamine (TMA) and water molecules have been observed by Matrix Isolation Fourier Transform Infrared Spectroscopy (MIS-FTIR). Infrared spectra of solid argon matrix layers, in which both TMA and H(2)O molecules were entrapped as impurities, were analyzed for bands in the ν(O-H) region, not seen in matrix layers containing either of the parent molecules alone. Results were interpreted on the basis of the emergence of several spectral band pairs and their red shifts from the position of the matrix isolated H(2)O monomers as compared to semiempirically scaled frequencies from the B3LYP/aug-cc-pVTZ calculations and empirical correlations with a large body of data on H-bonded complexes. Bands were assigned to a complex cluster of two TMA molecules flanking a closed ring of four H-bonded H(2)O molecules. The formation of this cluster is argued to be formed in the vapor phase (as opposed to being a result of diffusion of the trapped species) and is related to its large stabilization energy (enthalpy) because of strong cooperative effects in its H-bond system.  相似文献   

9.
Chiral separations in sub- and supercritical fluid chromatography   总被引:1,自引:0,他引:1  
Sub- and supercritical fluid chromatography (SFC) received more and more attention in pharmaceutical analysis during the last years. Especially for chiral separations, this technique is becoming increasingly popular. This review gives an overview of most chiral separation applications using SFC, covering the literature from 2000 on.  相似文献   

10.
The Car-Parrinello molecular dynamics method was used to determine the distributions of water dipole moments under normal conditions, at the critical point, and in six thermodynamic states in sub- and supercritical phase diagram regions. Dipole moment changes along the saturation curve, the 650 K isotherm, and the 30 MPa isobar were analyzed.  相似文献   

11.
在间歇式高压反应釜中采用乙醇为溶剂在亚/超临界状态下对水稻秸秆进行液化实验研究,考察了反应温度、稻秆/乙醇比及停留时间对稻秆液化的影响,确定了反应温度325 ℃、稻秆与乙醇比为1.0/10.0(g/mL)、反应时间60 min为最佳液化条件。在此条件下,稻秆转化率为78.32%,液化油收率达55.03%;通过GC-MS对液化油进行分析,结果表明,生物油的主要成分是酚类和酯类,占总体的50%左右。液化油的热值为28.95 MJ/kg,运动黏度为5.63 mm2/s,水分含量为2.2%。  相似文献   

12.
Classical molecular dynamics simulations of various methanol phase lines near the saturation curve and the critical point have been performed to study the changes in H-bonded clusters structure at transition of methanol to supercritical state. Analysis of H-bonds statistics with combined distance-energy H-bond criterion showed that the correlations between topological characteristics of H-bonds and the mole fraction of H-bonded molecules have unique functional representation despite the phase path applied. In the present study, an attempt has been also made to evaluate the degree of hydrogen bonding by combining the DFT computations on classical MD configurations with the natural bond orbital analysis of the waves functions obtained.  相似文献   

13.
Bioenergy obtained from lignocellulosic biomass is considered the most efficient way to achieve sustainable development in the future. However, there still are challenges in the cellulose conversion to hexoses, which could be used as raw material for the bioenergy production. Sub- and supercritical water hydrolysis have been researched as emergent technologies to obtain simple sugars from lignocellulosic biomass; however, the reaction pathways and kinetics of the hydrolysis of cellulose into oligomers and monomers, and their degradation under sub- and supercritical conditions, are not completely understood yet. Thus, this review provides an overview of the state-of-the-art on hydrolysis with sub- and supercritical water of model systems, cellulose and starch, in the context of elucidating the reaction pathways and kinetic behavior of the biomass hydrolysis to produce suitable fermentation substrates for the production of second generation bioethanol and other biofuels.  相似文献   

14.
The Car-Parrinello nonempirical molecular dynamics method was used to obtain radial distribution functions of water at the critical point and in six sub- and supercritical states. The influence of changes in state parameters on radial distribution functions was found to be much stronger close to the saturation curve than in the region of high pressures. The reproduction of radial distribution functions by classical and quantum molecular dynamics methods was analyzed. The positions of radial distribution peaks and the ratios between their heights were found to be almost identical and to correspond to the experimental data, but, as concerns quantitative estimates of peak heights, the same contradictions are observed as between the data of various experimental studies.  相似文献   

15.
采用微型高温高压反应釜,在超/亚临界乙醇体系,进行麦草碱木质素的解聚实验,通过扫描电子显微镜(SEM)、气相色谱/质谱联用仪(GC/MS)及红外光谱仪(FT-IR)对解聚产物进行分析,探讨大分子结构的解聚机理。结果表明,碱木质素在乙醇临界点条件(240℃,7.2 MPa)解聚获得最低残焦得率,数值为16.5%。碱木质素在亚临界乙醇体系解聚过程,碱木质素熔融形成直径1.0-2.0μm的微球分散于乙醇中,结构单体间少量醚键和苯环侧链Cα均裂断裂,形成酚类、酯类、酮类和酸类产物;碱木质素在超临界乙醇体系解聚过程,熔融微球直径明显缩小,解聚时发生大量结构单体间醚键、苯环侧链Cα断裂及酯类产物的二次分解反应,解聚产物中酯类产物含量(11.94%)降低,酚类产物得率(52.14%)提高。  相似文献   

16.
The site-selective H/D exchange reaction of phenol in sub- and supercritical water is studied without added catalysts. In subcritical water in equilibrium with steam at 210-240 degrees C, the H/D exchange proceeds both at the ortho and para sites in the phenyl ring, with no exchange observed at the meta site. The pseudo-first-order rate constants are of the order of 10(-4) s(-1); 50% larger for the ortho than for the para site. In supercritical water, the exchange is observed also at the meta site with the rate constant in the range of 10(-6)-10(-4) s(-1). As the bulk density decreases, the exchange slows down and the site selectivity toward the ortho is enhanced. The enhancement is due to the phenol-water interaction preference at the atomic resolution. The site selectivity toward the ortho is further enhanced when the reaction is carried out in benzene/water solution. Using such selectivity control and the reversible nature of the hydrothermal deuteration/protonation process, it is feasible to synthesize phenyl compounds that are deuterated at any topological combination of ortho, meta, and para sites.  相似文献   

17.
A high-resolution nuclear-magnetic-resonance probe (500 MHz for 1H) has been developed for multinuclear pulsed-field-gradient spin-echo diffusion measurements at high temperatures up to 400 degrees C. The convection effect on the self-diffusion measurement is minimized by achieving the homogeneous temperature distributions of +/-1 and +/-2 degrees C, respectively, at 250 and 400 degrees C. The high temperature homogeneity is attained by using the solid-state heating system composed of a ceramic (AlN) with high thermal conductivity comparable with that of metal aluminium. The self-diffusion coefficients D for light (1H2O) and heavy (2H2O) water are distinguishably measured at subcritical temperatures of 30-350 degrees C with intervals of 10-25 degrees C on the liquid-vapor coexisting curve and at a supercritical temperature of 400 degrees C as a function of water density between 0.071 and 0.251 gcm3. The D value obtained for 1H2O is 10%-20% smaller than those previously reported because of the absence of the convection effect. At 400 degrees C, the D value for 1H2O is increased by a factor of 3.7 as the water density is reduced from 0.251 to 0.071 gcm3. The isotope ratio D(1H2O)D(2H2O) decreases from 1.23 to approximately 1.0 as the temperature increases from 30 to 400 degrees C. The linear hydrodynamic relationship between the self-diffusion coefficient divided by the temperature and the inverse viscosity does not hold. The effective hydrodynamic radius of water is not constant but increases with the temperature elevation in subcritical water.  相似文献   

18.
19.
Raman spectra of p-nitroaniline in supercritical water and supercritical alcohols were measured, and the effects of solvents on the NO 2 and NH 2 stretching modes were investigated. The intensity and frequency of the NO 2 stretching mode significantly changed as a function of the solvent density and temperature. The frequency of the NO 2 stretching mode correlated with the absorption peak energy of the S 1<--S 0 transition. On the other hand, the vibrational frequency of the NH 2 stretching mode did not correlate with the absorption peak shift, although it had a large frequency shift as a function of the density. The correlation between the NO 2 frequency and absorption peak energy suggested that the solvent effects of supercritical water and supercritical alcohols were similar to those for nonpolar solvents. The density functional calculation using the polarizable continuum model and p-nitroaniline-water clusters qualitatively reproduced the density dependence of the NO 2 stretching mode as well as the solvent polarity dependence. Detailed vibrational analysis revealed that the coupling between the NO 2 and C-NH 2 vibrational motions at the harmonic level has an important effect on the intensity and frequency shift of the NO 2 stretching mode. The frequency shift of the NH 2 stretching mode correlated with the degree of hydrogen bonding between the solvent molecules estimated from NMR measurements [Hoffmann M. M.; Conradi, M. S. J. Phys. Chem. B. 1998, 102, 263]. The existence of intermolecular hydrogen bonding around the NH 2 group was demonstrated even at low-density conditions.  相似文献   

20.
以Hpda[3-(3-吡啶基)乙烯酸]为配体、AgNO_3为金属源,常温下合成了一个新颖的Ag配合物[Ag_2(pda)_2(H_2O)_3]n.通过往AgNO_3和Hpda的悬浊液中滴加氨水,室温下随着氨水的挥发澄清液中析出无色的晶体,所得产物经红外、XRD及热重表征.该分子中含有2个Ag中心,每个Ag中心通过pda配体及Ag—Ag键相连形成花生形状的一维链,该链进一步被Ag—Ag键连接形成双链结构.游离的水分子之间相互作用形成二维层状水簇,呈有趣的L4(4)12(8)形状.水分子与pda配体中的羧基氧通过氢键相互作用,将一维双链延伸成三维网络结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号