首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dipole moment of the gas phase water monomer is 1.85 D. When solvated in bulk water, the dipole moment of an individual water molecule is observed to be enhanced to the much larger value of 2.9 +/- 0.6 D. To understand the origin of this dipole moment enhancement, the effective fragment potential (EFP) method is used to solvate an ab initio water molecule to predict the dipole moments for various cluster sizes. The dipole moment as a function of cluster size, nH 2O, is investigated [for n = 6-20 (even n), 26, 32, 41, and 50]. Localized charge distributions are used in conjunction with localized molecular orbitals to interpret the dipole moment enhancement. These calculations suggest that the enhancement of the dipole moment originates from the decrease of the angle between the dipole vectors of the lone pairs on oxygen as the number of hydrogen bonds to that oxygen increases. Thus, the decreased angle, and the consequent increase in water dipole moment, is most likely to occur in environments with a larger number of hydrogen bonds, such as the center of a cluster of water molecules.  相似文献   

2.
Model clusters of surfactant prototypes with small number of water molecules are calculated at different levels of theory. All approaches used yield correct trends in the variation of the dipole moment upon tail elongation or polar headgroup variation. Models including one, two, or more water molecules are optimized. The most stable structures are those with maximum number of atoms involved in hydrogen bonding. The normal components of the dipole moment prove to be less sensitive to the nature (aliphatic or aromatic) of the hydrophobic tail, in accord with findings from the phenomenological models. Values of the dipole moment approaching the experimental estimates required inclusion of sufficient aqueous environment (>20 water molecules per hydrophilic head) and of lateral intersurfactant interactions into the model.  相似文献   

3.
The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structures of the transition states and the activation energies were determined. Calculations with and without dipole correction were both studied to get an understanding of the effect of the dipole moment on the adsorption and reaction of water on dipole surface Cu2O(100). When dipole correction was added, the adsorption energies of H2O on different sites generally decreased. The calculated activation barriers for HxO (x = 1, 2) dehydrogenation are 0.42 eV (1.01 eV without the dipole correction) and 1.86 eV, respectively, including the zero point energy correction. The first dehydrogenation outcome is energetically the most stable product.  相似文献   

4.
In order to test the validity of the cluster ansatz approach as well as of the continuum model approach and to learn about the solvation shell, we carried out first-principles molecular dynamics simulations of the alanine hydration. Our calculations contained one alanine molecule dissolved in 60 water molecules. Dipole moments of individual molecules were derived by means of maximally localized Wannier functions. We observed an average dipole moment of about 16.0 D for alanine and of about 3.3 D for water. In particular, the average water dipole moment in proximity of alanine's COO(-) group decayed continously with increasing distance, while, surprisingly, close to the CH3 and NH3+ group, the dipole moment first rose before its value dropped. In a cluster ansatz approach, we considered snapshots of alanine surrounded by different water molecule shells. The dipole moments from the cluster approaches utilizing both maximally localized Wannier functions as well as natural population analysis served to approximate the dipole moments of the total trajectory. Sufficient convergence of the cluster ansatz approach is found for either of the two solvent shells around the polar groups and one solvent shell around the apolar groups or two solvent shells around the polar groups surrounded by a dieletric continuum.  相似文献   

5.
The ground state and excited state dipole moment of a series of alkyl substituted para-nitroaniline derivatives is reported. Ground state dipole moment was determined by the Debye-Guggenheim method and the excited state dipole moment was estimated using the solvatochromic method. For all molecules under investigation, the excited state dipole moment was found to be higher than the ground state dipole moment. The molecules exhibited positive solvatochromism.  相似文献   

6.
The idea of the basis set polarization which follows from the known dependence of basis set functions on the perturbation strength is applied to the calculation of the dipole moment derivatives with respect to nuclear displacements. The differentiation of the dipole moment function is replaced by the straightforward evaluation of derivatives of the intramolecular electric field with respect to the external electric field strength. The method and its efficiency are illustrated by a series of calculations of the dipole moment derivatives for the water molecule. Already a polarized basis set of 26 CGTO's derived from the minimal CGTO basis set provides fairly reasonable results.  相似文献   

7.
To estimate accurately the density of water over a wide range of temperatures with a density maximum at 4?°C is one of the most stringent tests of molecular models. The shape of the curve influences the ability to describe critical properties and to predict the freezing temperature. While it was demonstrated that with a proper parameter fit nonpolarizable models can approximate this behavior accurately, it is much more difficult to do this for polarizable models. We provide a short overview of ρ-T diagrams for existing models, then we give an explanation of this difficulty. We present a version of the BK model [A. Baranyai and P. T. Kiss, J. Chem. Phys. 133, 144109 (2010); and ibid. 135, 234110 (2011)] which is capable to predict the density of water over a wide range of temperature. The BK model uses the charge-on-spring method with three Gaussian charges. Since the experimental dipole moment and the geometry is fixed, and the quadrupole moment is approximated by a least mean square procedure, parameters of the repulsion and dispersive attraction forces remained as free tools to match experimental properties. Relying on a simplified but plausible justification, the new version of the model uses repulsion and attraction as functions of the induced dipole moment of the molecule. The repulsive force increases, while the attractive force decreases with the size of the molecular dipole moment. At the same time dipole moment dependent dispersion forces are taking part in the polarization of the molecule. This scheme iterates well and, in addition to a reasonable density-temperature function, creates dipole distributions with accurate estimation of the dielectric constant of the liquid.  相似文献   

8.
We compare a new classical water model, which features Gaussian charges and polarizability (GCPM) with ab initio Car-Parrinello molecular dynamics (CPMD) simulations. We compare the total dipole moment, the total dipole moment distribution, and degree of hydrogen bonding at ambient to supercritical conditions. We also compared the total dipole moment calculated from both the electron density (partitioning the electron density among molecules based on a zero electron flux condition), and from the center of localized Wannier function centers (WFCs). Compared to CPMD, we found that GCPM overpredicts the dipole moment derived by partitioning the electron density and underpredicts that obtained from the WFCs, but exhibits similar trends and distribution of values. We also found that GCPM predicted similar degrees of hydrogen bonding compared to CPMD and has a similar structure.  相似文献   

9.
The influence of an external field on the ground states energy and dipole moment of the cyclic water trimer is investigated. Employing the Hartree-Fork method with basis sets 3-21G. The field-induced H-F force including the internal and external forces and clusters equilibrium structures under balance of this force are analyzed. The external field is varied in the 0.001~0.01 a.u. range. It is shown that the magnitude of the external electric field has important effects on these characteristics of the cyclic water trimer. The energy was found to decrease and the dipole moment to increase with the increasing external field. The change of the electronic population of every atom leads the electrostatic field to vary accordingly.  相似文献   

10.
Abstract

In the lecture presented by Prof. Reddy the role of water in determining the potential dependence of electrosorption of neutral organic molecules has been discussed. The process one considers is that of the replacement of a number of water molecules n by each organic molecule adsorbed. The dipole moments of the adsorbed water molecules interact with the electrical field in the double layer and hence cause a potential (or charge) dependent adsorption of the neutral organic molecule, even if the latter possesses no permanent dipole moment. The theory of this phenomenon has been worked out by Bockris, Devanathan and Muller. Corrections for lateral interactions between the adsorbed water molecules and for the permanent dipole moment of the electrosorbed neutral organic molecule have been made.1,2  相似文献   

11.
以丹磺酰氯(DNS-Cl)为光敏元件,单氮杂冠醚为识别元件,合成,鉴定了题示光敏离子载体DNS-MAC(O5),研究了它在水溶液和各种有机溶剂中的吸收光谱和发光光谱。对比DNS-Cl,基于在不同极性溶剂中荧光光谱的变化,采用Solvachromic法,由Lippert方程估算得它们的激发态偶极矩。  相似文献   

12.
We report the results of a Monte Carlo simulation of polar particles interacting via the Gay-Berne potential combining dipole-dipole interactions. Simulations were carried out on a system of 256 particles with either a zero dipole moment or longitudinal dipole moment located at the centre of the molecule. The system was found to spontaneously form nematic, smectic and crystal phases from an isotropic phase with a random configuration as temperature was decreased, irrespective of values of the dipole moment. The results do not give any indication of a net polarization even in the system with a strong dipole moment (μ* = 2.00). The transition temperature from the isotropic to nematic phase is not sensitive to the value of the dipole moment within the limits of statistical error, while the transition from the nematic to smectic phase depends on the strength of dipole moment. At lower temperatures forming the smectic or the crystal phase, the translational order along the director increases with increasing dipole moment. The dipolar interactions contribute to the long range ordering.  相似文献   

13.
Electronic properties of liquid water were analysed by a sequential molecular dynamics (MD)/density functional theory approach. MD simulations are based on a polarisable model for water. Emphasis was placed on the prediction of the water dipole moment, liquid state polarisability, ionisation potential (IP), and vertical electron affinity. The dipole moment of the water molecule in liquid water is not dependent on the number of molecules included in the quantum mechanical calculations. The polarisability of the water molecule in liquid water is 4% lower than its gas phase value. The IP of liquid water (9.7 ± 0.06 eV) is in good agreement with recent experimental data.  相似文献   

14.
Computer simulation has been used to investigate the cluster formation of the asphaltenes. Asphaltene nanoaggregates, forming a cluster, possessed permanent dipole moments. The influence of various factors, namely, temperature of the medium, size and dipole moment of the nanoaggregates, on the dipole moment of the asphaltene cluster was studied. The orientation interactions between the nanoaggregates were demonstrated to rise with increasing specific dipole moment of the nanoaggregates. It is has been found that the dipole moment of the asphaltene cluster varies according to power law in relation to the number of the nanoaggregates, forming the cluster.  相似文献   

15.
16.
近十几年来,汽液平衡盐效应的研究一直是国内外十分活跃的课题.但是,对于多组分含盐体系,特别是多组分羧酸体系,如甲酸-乙酸-水-盐体系的汽液平衡盐效应研究报道甚少。一方面因为多元汽液平衡盐效应的测定较难;另一方面由于盐的加入,使原来的强极性、强缔合的羧酸体系变得更为复杂,给热力学关联带来了困难.尽管有的关联方法引入盐后引起偶极矩改变,且使偏心因子产生相应变化,但在实验上并未得到偶极矩随盐浓度定量变化的关系。  相似文献   

17.
白藜芦醇分子的转动惯量和电偶极矩   总被引:4,自引:0,他引:4  
通过分子轨道理论和杂化轨道理论推断出较稳定的白藜芦醇分子是平面型分子,然后根据白藜芦醇分子结构特点计算了该化合物的一种稳定异构体的转动惯量,用矢量合成法计算了其电偶极矩,为微波辅助白藜芦醇萃取理论研究提供转动惯量和电偶极矩的数据.  相似文献   

18.
We report full-dimensional, ab initio potential energy and dipole moment surfaces, denoted PES and DMS, respectively, for arbitrary numbers of water monomers. The PES is a sum of 1-, 2-, and 3-body potentials which can also be augmented by semiempirical long-range higher-body interactions. The 1-body potential is a spectroscopically accurate monomer potential, and the 2- and 3-body potentials are permutationally invariant fits to tens of thousands of CCSD(T)/aug-cc-pVTZ and MP2/aug-cc-pVTZ electronic energies, respectively. The DMS is a sum of 1- and 2-body DMS, which are covariant fits to tens of thousands MP2/aug-cc-pVTZ dipole moment data. We present the details of these new 2- and 3-body potentials and then extensive applications and tests of this PES are made to the structures, classical binding energies, and harmonic frequencies of water clusters up to the 22-mer. In addition, we report the dipole moment for these clusters at various minima and compare the results against available and new ab initio calculations.  相似文献   

19.
The large dipole moment and the negative dipole moment derivatives with respect to H–Rg displacement of the neutral HRgX (Rg=He, Ar, Kr; X=F, Cl) molecules have been rationalised by a charge/charge flux/dipole flux decomposition of the charge density using the ChelpG method. This approach was also applied to the hydrogen halides HF and HCl for the sake of comparison. It was found that the dipole moment of HRgX is dominated by the large positive charge contribution while the negative dipole moment derivative of HRgX is due to the dominance of the negative charge flux contribution.  相似文献   

20.
Reported here are measurements of the magnitude and orientation of the induced dipole moment that is produced when an indole molecule in its ground S(0) and electronically excited S(1) states is polarized by the attachment of a hydrogen bonded water molecule in the gas phase complex indole-H(2)O. For the complex, we find the permanent dipole moment values mu(IW)(S(0)) = 4.4 D and mu(IW)(S(1)) = 4.0 D, values that are substantially different from calculated values based on vector sums of the dipole moments of the component parts. From this result, we derive the induced dipole moment values mu(I) (*)(S(0)) = 0.7 D and mu(I) (*)(S(1)) = 0.5 D. The orientation of the induced moment also is significantly different in the two electronic states. These results are quantitatively reproduced by a purely electrostatic calculation based on ab initio values of multipole moments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号