首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Natural rubber composites with alumina of different particle sizes (28 nm nano particles, 200 nm active particles and > 1000 nm raw alumina) were prepared by the usual rubber processing technique. Epoxidized natural rubber (ENR) was used in the composites as compatibilizer. Cure characteristics and mechanical properties of all composites were analyzed. The values of minimum rheometric torque (ML), maximum rheometric torque (MH) and torque difference (MH – ML) increased. Maximum enhancement was observed for the nano-filled composites. It endorses the view that nano alumina reveals highest interaction with natural rubber in presence of ENR. Scorch time and optimum cure time values for nano-composites were highest among all types of composites. Vulcanization reaction for the sulfur curing system of the composites was found to follow first order rate kinetics. Specific rate constant decreased with decreasing particle size in composites. Crosslink densities of composite-vulcanizates showed increasing trend with decreasing particle size of alumina. Mechanical properties of the composite vulcanizates increased with decreasing particle size of alumina - nano composites exhibiting much higher mechanical strength. Results of oxidative resistance reveal that particle size of alumina in composite vulcanizates has a significant impact on aging behavior.  相似文献   

2.
Layered silicate/natural rubber composites were prepared by direct polymer melt intercalation. Na‐montmorillonite Kunipia‐F and its organic derivates (organo‐clays) prepared by ion exchange were used as clay fillers. Silica (SiO2) Ultrasil VN3, a filler commonly used in the rubber industry, was used in combination with clay fillers. The effect of clay or organo‐clay loading from 1 up to 10 phr without (0 phr) or with silica (15 phr) showed significant improvement of the tensile properties (stress at break, strain at break and modulus M100). Modification of montmorillonite by three alkylammonium cations with the same length of alkylammonium chain (18 carbons) and different structure resulted in altered reinforcing and plasticizing effects of the filler in composites with rubber matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Summary: For the first time, a series of Gd(AA)3/NR (natural rubber) composites for X‐ray shielding were prepared by an in situ reaction method. Occurrence of the in situ polymerization of Gd(AA)3 in composites during vulcanization of NR with peroxide greatly improves the dispersion level of the shielding phase by the remarkable reduction of Gd(AA)3 particle size and the formation of small sized poly‐Gd(AA)3 from the matrix. As expected and assumed, the X‐ray shielding properties of all composites apparently increase with the increase of the degree of dispersion of Gd(AA)3 in composites.

The ability of the composites to shield X‐ray radiation increases with an increase in Gd(AA)3 content and as the degree of in situ polymerization of Gd(AA)3 increases (i.e., as t tends towards t100).  相似文献   


4.
The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites were studied. Scorch time, t2 and cure time, t90 of the composites decrease with increasing filler loading and with the presence of a silane coupling agent, Si69. Mooney viscosity also increases with increasing filler loading but at a similar filler loading shows lower value with the presence of Si69. The mechanical properties of composites viz tensile strength, tear strength, hardness and tensile modulus were also improved with the addition of Si69.  相似文献   

5.
This research is conducted using palm kernel shell powder (PKS) as filler in natural rubber The effect of 3-aminopropyltrimethoxysilane as coupling agent on composites were studied at different palm kernel shell loading i.e, 0 5, 10, 15 and 20 phr The palm kernel shell was crushed and sieved to an average particle size of 5.53 μm The palm kernel shell filled natural rubber composites were prepared using laboratory size two roll mill The curing characteristics such as scorch time, cure time and maximum torque were obtained from rheometer The palm kernel shell powder filled natural rubber composites were cured at 150oC using hot press according to their cure time Curing characteristics, tensile properties, rubber-filler interaction and morphological properties of palm kernel shell powder filled natural rubber were studied Scorch time and cure time show reduction but tensile strength, elongation at break, modulus at 100% (M100) and modulus at 300% (M300) increased with the presence of 3-aminopropyltrimethyloxysilane Rubber-filler interaction studies showed that rubber filler interaction in natural rubber filled with palm kernel shell powder improved with incorporation of 3-aminopropyltrimethyoxysilane.  相似文献   

6.
Dielectric elastomers (DEs) require high drive voltages to obtain large actuated strain, which limits their application in the biological field. In this work, we enhanced the dielectric properties of natural rubber (NR) composites by using core–shell structured (CaCu3Ti4O12)x@(BaTiO3)(1−x) (CCTOx@BT(1−x)) high-dielectric particles with an buffer layer, and adjusted the thickness of the BT buffer layer by adjusting the addition of titanate during the preparation process, and then observed the relationship between the dielectric properties of NR composites and the thickness of the BT buffer layer. In addition, we modified the CCTO0.75@BT0.25 fillers surface with silane coupling agent KH560 to enhance the interfacial interaction between the inorganic fillers and polymeric matrix to obtain better dispersion and greater dielectric properties. As a result of the optimization of the CCTO0.75@BT0.25@KH560 structure, the actuated strain performance is greatly improved. The actuated strain of 5 per hundred rubber (phr) CCTO0.75@BT0.25@KH560/NR is 16.3% at 74.03 kV/mm, which is 6.52 times higher than the actuated strain obtained by NR (2.5%) at 50.28 kV/mm. This work presents a method to optimize the structure of core–shell fillers by modulating the buffer layer, and provides a new idea for further preparation of dielectric elastomer materials with large actuated strain at low voltage.  相似文献   

7.
The effect of carbon black(CB) and graphite(G) powders on the macroscopic and nano-scale free volume properties of silicone rubber based on poly(di-methylsiloxane)(PDMS) was studied through thermal and cyclic mechanical measurements, as well as with positron annihilation lifetime spectroscopy(PALS). The melting temperature of the composites(Tm) and the endothermic enthalpy of melting(?Hm) were estimated by differential scanning calorimetry(DSC). Tm and the degree of crystallinity(χc) of PDMS composites were found to decrease with increasing the CB content. This can be explained due to the increase in physical cross-linking which results in a decrease in the crystallite thickness. Besides, χc was found to be dependent on the filler type. Cyclic stress-strain behavior of PDMS loaded with different contents of filler has been studied. Mullins ratio(RM) was found to be dependent on the filler type and content. It was found that, RM increases with increasing the filler content due to the increase in physical cross-linking which results in a decrease in the size of free volume, as observed through a decrease of the o-Ps lifetime τ3 measured by PALS. Moreover, the hysteresis in PDMS-CB composites was more pronounced than in PDMS-G composites. Furthermore, a correlation was established between the free volume Vf and the mechanical properties of PDMS composites containing different fillers. A negative correlation was observed between Vf and RM.  相似文献   

8.
The effects of molecular weight (MW) and MW distribution on the maximum tensile properties of polyethylene (PE), achieved by the uniaxial drawing of solution‐grown crystal (SGC) mats, were studied. The linear‐PE samples used had wide ranges of weight‐average (Mw = 1.5–65 × 105) and number‐average MWs (Mn = 2.0–100 × 104), and MW distribution (Mw/Mn = 2.3–14). The SGC mats of these samples were drawn by a two‐stage draw technique, which consists of a first‐stage solid‐state coextrusion followed by a second‐stage tensile drawing, under controlled conditions. The optimum temperature for the second‐stage draw and the resulting maximum‐achieved total draw ratio (DRt) increased with the MW. For a given PE, both the tensile modulus and strength increased steadily with the DRt and reached constant values that are characteristic for the sample MW. The tensile modulus at a given DRt was not significantly affected by the MW in the lower DRt range (DRt < 50). However, both the maximum achieved tensile modulus (80–225 GPa) and strength (1.0–5.6 GPa), as well as those at higher DRts > 50, were significantly higher for a higher MW. Although the maximum modulus reached 225 ± 5 for Mn ≥ 4 × 105, the maximum strength continued to increase with Mn even for Mn > 4 × 105, showing that strength is more strongly dependent on the Mn, even at higher Mn. Furthermore, it was found that each of the maximum tensile modulus and strength achieved could be expressed by a unique function of the Mn, independently of the wide variations of the sample MW and MW distribution. These results provide an experimental evidence that the Mn has a crucial effect on the tensile properties of extremely drawn and chain‐extended PE fibers, because the structural continuity along the fiber axis increases with the chain length, and hence with the Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 153–161, 2006  相似文献   

9.
The viscosity, cure properties, storage, and loss moduli and tan δ of natural rubber (NR) filled with the same amounts of precipitated silica (PSi) and fly ash silica (FASi) fillers were measured. The fillers were treated with bis[3‐triethoxysilylpropyl‐]tetrasulfide (TESPT), or, used in the rubber untreated. TESPT is a sulfur‐containing bi‐functional organosilane that chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulfur cure. The dispersion of PSi and FASi in the rubber was investigated using scanning electron microscope (SEM). The effects of silica type and loading and surface treatment on the aforementioned properties were of interest. The SEM results showed that the FASi particles were larger in size and had a wider particle size distribution when compared with the PSi particles. The viscosity of the compounds decreased progressively with mixing time, and the compounds with FASi had a lower viscosity than those filled with PSi. The treatment with Si69 had no beneficial effect on the dispersion of the fillers in the rubber matrix. At low temperatures, the type and loading of the filler had no effect on the storage and loss moduli of the compounds, but the effect was more pronounced at high temperatures. There was also evidence from the tan δ and glass transition temperature (Tg) measurements that some limited interaction between the filler particles and rubber had occurred because of TESPT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Novel biphasic structured in situ silica filled natural rubber composites were focused on their strain-induced crystallization (SIC) behavior from the viewpoint of morphology. The composites were prepared by in situ silica filling in natural rubber (NR) latex using a sol–gel reaction of tetraethoxysilane. Simultaneous time-resolved wide-angle X-ray diffraction and tensile measurements revealed a relationship between the characteristic morphology and tensile stress–strain properties of the composites associating with the SIC. Results showed stepwise SIC behaviors of NR-based composites for the first time. Pure rubber phases in the biphasic structure were found to afford highly oriented amorphous segments and oriented crystallites. The generated crystallites worked as reinforcing fillers together with the in situ silica to result in high tensile stresses of the composites. The observed characteristics are useful for understanding a role of filler network in the reinforcement of rubber.  相似文献   

11.
Eucommia ulmoides gum (EUG) is a renewable and sustainable polymer, which could be used as rubber or plastic by altering its crosslinking density while the complicated extracting process and nonpolar molecular chains limited its application. In this effort, a novel extraction method was introduced, which could simplify the extraction process of EUG. Then, the extracted EUG‐chloroform (CHCl3) solution was directly used to prepare epoxidized EUG (EEUG) with an epoxy degree of 40.0% to improve its polarity. The epoxidized natural EUG exhibiting both polar and nonpolar motives had an advantage in working as an interfacial compatibilizer for polymer composites, especially bio‐based composites due to its inherent biocompatibility. Accordingly, the role of EEUG in modifying the interface of styrene‐butadiene rubber (SBR)/silica composites were explored. The results showed that EEUG in SBR/silica composites acted not only as a compatibilizer but also as a constructure generating better mechanical properties than other compatibilizers, such as silane couplings, Si‐69 and KH‐550, and epoxidized natural rubber (ENR). The simplified extracting process and the epoxy modification of EUG would extend its application in rubber materials, medical materials, and biopolymer materials.  相似文献   

12.
Poly(dimethylsiloxane) networks were prepared by tetrafunctionally end‐linking hydroxyl‐terminated chains with tetraethoxysilane (TEOS). Molecular composites were then prepared by in situ sol–gel reactions on additional TEOS swelled into the networks, resulting in the formation of reinforcing silica fillers within the host elastomers. The amount of filler generated generally increased linearly with an increase in the TEOS swelling ratio, as expected. The silica particles formed were examined by small‐angle X‐ray scattering. Of particular interest were the relationships between particle size and molecular weight Mc of the network chains (mesh sizes), amount of filler introduced, and catalyst concentration. Particle sizes were smallest for the smallest values of Mc, possibly demonstrating constraining effects from the very short network chains. At fixed Mc and filler concentrations, higher catalyst concentrations gave larger particles. Increase in filler concentration generally had little effect on particle size at low and high loadings, but markedly increased sizes at intermediate levels (10–20 wt %), presumably caused by coalescence of the scattering entities into considerably larger aggregates. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1421–1427, 1999  相似文献   

13.
Shape memory composites of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon nanotubes (CNTs) were introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal, and shape memory properties of the TPI/LDPE/CNTs composites were investigated in this study. In these composites, the cross‐linked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a domain of reversible shape memory behavior. We found that CNTs acted as not only reinforced fillers but also nucleation agents, which improved the crystalline degree of the TPI and LDPE portions of the composites. Compared with the properties at the other CNT doses, the mechanical properties of the TPI/LDPE composites when the CNT dose was 1 phr were improved significantly, showing excellent shape memory properties (Rf = 97.85%, Rr = 95.70%).  相似文献   

14.
A novel rubber composite of acrylonitrile–butadiene rubber (NBR) filled with anhydrous copper sulfate (CuSO4) particles was investigated. Dynamic mechanical analysis, differential scanning calorimetry, X‐ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of this novel CuSO4/NBR composite. The results indicated that the composite had wonderful mechanical properties, which profited from the in situ coordination crosslinking interactions between the nitrile groups (? CN) of NBR and solid CuSO4 particles. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and transmission electron microscopy results showed that CuSO4 particles played two roles, acting as both crosslink agents and reinforcing fillers in the matrix. The double actions of CuSO4 gave the CuSO4/NBR composites their excellent mechanical properties. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 571–576, 2007  相似文献   

15.
In this paper, nanoalumina (Al2O3) highly filled ethylene propylene diene monomer (EPDM) composites are prepared, and the mechanical (static and dynamic) properties and thermal conductivity are investigated systemically through various characterization methods. Furthermore, influences of in situ modification (mixing operation assisted by silane at high temperature for a certain time) with the silane‐coupling agent bis‐(3‐triethoxy silylpropyl)‐tetrasulfide (Si69) and stearic acid (SA) pretreatment on the nano‐Al2O3 filled composites are as well investigated. The results indicate that nano‐Al2O3 particles can not only perform well in reinforcing EPDM, but also improve the thermal conductivity significantly. Assisted by in situ modification with Si69, the mechanical properties (especially dynamic mechanical properties) of the nano‐Al2O3 filled composites are improved obviously, without influencing the thermal conductivity. By comparing to the traditional reinforcing fillers, such as carbon black (grade N330) and silica, in situ modified nano‐Al2O3 filled composites exhibit excellent performance in mechanical (static and dynamic) properties as well as better thermal conductivity, especially lower compression heat build‐up and better fatigue resistance. In general, our work indicates that nano‐Al2O3, as the novel thermal conductive reinforcing filler, is suitable to prepare rubber products serving in dynamic conditions, with the longer expected service life. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Ultradrawing of atactic poly(acrylonitrile) (PAN) was investigated for a Mv series, ranging 8.0 × 104–2.3 × 106. Samples for the draw were prepared from 0.5–30 wt % solutions of PAN in N,N′-dimethylformamide. The solutions were converted to a gel by quenching from 100 to 0°C. The dried gel films were initially drawn uniaxially by solid-state coextrusion (first-stage draw) to an extrusion draw ratio (EDR) of 16, followed by further tensile draw at 100–250°C (second-stage draw). The maximum total draw ratio (DRt,max) and tensile properties achieved by two-stage draw increased remarkably with sample Mv. Other factors affecting ductility were the solution concentration from which gel was made and the second-stage draw temperature. The effects of these variables became more prominent with increasing Mv. The temperature for optimum second-stage draw increased with sample Mv. Both the initial gel and the drawn products showed no small-angle X-ray long period scattering maximum, suggesting the absence of a chain-folded lamellae structure, which had been found in our previous study on the drawing of nascent PAN powder. The chain orientation function (fc) and sample density (ρs) increased rapidly with DRt in the lower range (DRt < 30) and approached constant values of fc = 0.980–0.996 and ρs = 1.177–1.181 g/cm3, respectively, at higher DRt > 30–100. The tensile modulus also showed a similar increase with DRt. The tensile strength increased linearly with DRt, reaching a maximum, and decreased slightly at yet higher DRt. The highest modulus of 28.5 GPa and strength of 1.6 GPa were achieved with the highest Mv of 2.3 × 106. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 629–640, 1998  相似文献   

17.
The aim of this study was to measure the thermal properties of foamed nano/macro filler–reinforced styrene maleic anhydride (SMA) composites. SMA (66%) as a polymer matrix (10% maleic anhydride content) and various fillers including wood flour, starch, α-cellulose, microcrystalline cellulose and cellulose nanofibrils as reinforcing agents (30%) and lubricant (4%) were used to manufacture the composites in a twin-screw extruder. According to the thermogravimetric analysis (TGA) results, thermal degradation of all the foamed composites was found to be lower than that of SMA composites. The storage modulus values were negatively affected with a second time foaming (reprocessing [recycling] the initially processed composites a second time), as were loss modulus and Tg. As a result, second-time-foamed composite modulus values were lower than those of the foamed composites. According to the melt flow index (MFI) results, viscosity of the SMA was found to increase with the addition of fillers.  相似文献   

18.
Graphite is an efficient and affordable filler for polymer composites, allowing the control of thermal conductivity. In comparison to other thermally conductive fillers, graphite is lightweight and flexible but affords anisotropic thermal conductivity. Herein, the control of thermal conductivity of graphite-containing polymer composite sheet using spherical polymer particles as additional fillers is described. The thermal conductivity in the through-plane direction (λt) of the composite sheet is enhanced by varying the composition ratio of the two fillers (flaky graphite and spherical particles), and optimizing the forming temperature and pressure. Graphite-containing (25 wt%) polymer composite sheet formed by compression at 150 °C and 10 MPa exhibits λ t value of 0.66 W/m K. Upon mixing of polystyrene microspheres, λ t is successfully increased. The maximum value of thermal conductivity for a composite sheet with 35 wt% of graphite and 50 wt% of spherical particles is 7.51 W/m K, at 180 °C and 10 MPa. The graphite-containing polymer matrix forms a sequentially connected network-like structure in the composite sheet. Excess polymer microspheres lead to the formation of void structures inside the composite sheet, reducing the thermal conductivity. Thermo-camera observations proved that the composite sheets with higher λ t value showed comparably high heat radiations. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 607–615  相似文献   

19.
The present work focuses on the study of the electrical properties of high‐density polyethylene (HDPE)/multiwalled carbon nanotube (MWCNT) nanocomposites. The samples were produced by melt mixing by diluting a masterbatch of HDPE/MWCNT using two types of mini‐extruders in order to see the influence of the shear processing on the electrical properties. The dielectric relaxation spectroscopy was used for the investigation of the electrical properties in the studied samples. The composites dc conductivity (σdc) follows the scaling low derivate from the percolation theory of the form σdc ~ (p ? pc)t. A low electrical percolation (pc ≈ 0.3 ? 0.4 vol. %) was found in both cases. The critical exponent t had a value very close to the theoretical one for a percolation network in three dimensions (t ≈ 2). The analysis of the morphology of the nanocomposites showed a good and homogeneous dispersion of the fillers in the PE matrix. The effect of the incorporation of MWCNTs on the dynamic mechanical and thermal behaviors was also presented. The MWCNTs have improved the mechanical properties of the polyethylene matrix and increased the crystallization temperatures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A series of polyurethanes (PU) prepolymers with NCO/OH ratios of 2.1:1 and 1.9:1 were prepared by reacting hydrogenated methylene di-p-phenyl diisocyanate (HMDI) with triol mixtures of TP740 (molecular weight 740) and TP1540 (molecular weight 1540). Stress–strain (S/S) and swelling equilibrium measurements were performed using thin-film samples prepared by moisture-curing the prepolymer at room temperature. The swollen PU networks gave an S/S curve which is fully described by rubber elasticity theory. The Mooney-Rivlin constant C1 (swollen) was found to increase directly while the molecular weight between crosslinks Mc decreases as the number of branches per cubic centimeter is increased. The solvent—polymer interaction parameter χ determined in benzene was 0.077 + 0.97vr, where vr is the volume fraction of rubber in the swollen network. The crosslink density v′, and Mc were calculated from the relations v′ = pNB and Mc = 0.667 B?1, where B denotes moles of branches per gram, and were found to be in good agreement with v′ and Mc established from S/S and swelling-equilibrium measurements. In calculating v′ and Mc, the water-PU crosslinking reaction at room temperature was assumed to occur mainly through the formation of a urea linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号