首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 4545 Å line of the Ar+ laser has been used to excite a pR1 line of a vibrational band of the 2B1-2A1 system of nitrogen dioxide. Fluorescence from the upper level to the ground electronic state forms a long progression in the bending vibration. This progression can be followed from v2 = 0 up to v2 = 12, and the fluorescence intensity passes through several local minima as a function of v2. The main features of the intensity distribution can be reproduced using a model Hamiltonian which separates the bending and rotation from the stretching vibrations. This Hamiltonian can also be used to reproduce the fluorescence frequencies by adjusting the potential function of the lower state.  相似文献   

2.
Two independent, extensive theoretical calculations are reported for the relative band strengths of the AlO (B2+?X2+) blue-green system and for the radiative lifetimes of the lowest few vibrational levels of the B2+ state. The theoretical lifetimes, which include a small (<0.5%) contribution from bound-bound transitions into the A2Π state, are in excellent agreement with laser fluorescence studies. The theoretical lifetimes increase monotonically and very slowly with increasing vibrational quantum number. The relative band strengths for the blue-green system derived from the two theoretical calculations are in excellent agreement, but differ systematically from the relative band strengths of Linton and Nicholls. Our results suggest that their self-absorption corrections are not large enough, resulting in relative intensities that are too large, especially for the weak bands with r centroids less than 1.5Å.  相似文献   

3.
More than 250 rotationally resolved vibrational bands of the A2B2-X2A1 electronic transition of 15NO2 have been observed in the 14 300-18 000 cm−1 range. The bands have been recorded in a recently constructed setup designed for high resolution spectroscopy of jet cooled molecules by combining time gated fluorescence spectroscopy and molecular beam techniques. The majority of the observed bands has been rotationally assigned and can be identified as transitions starting from the vibrational ground state or from vibrationally excited (hot band) states. An exceptionally strong band is located at 14 851 cm−1 and studied in more detail as a typical benchmark transition to monitor 15NO2 in atmospheric remote sensing experiments. Standard rotational fit routines provide band origins, rotational and spin rotation constants. A subset of 177 vibronic levels of 2B2 vibronic symmetry has been analyzed in the energy range between 14 300 and 17 250 cm−1, in terms of integrated density and using Next Neighbor Distribution. It is found that the overall statistical properties and polyad structure of 15NO2 are comparable to those of 14NO2 but that the internal structures of the polyads are completely different. This is a direct consequence of the X2A1-A2B2 vibronic mixing.  相似文献   

4.
The ν2 + ν3 bands of 12CH4 and 13CH4 occurring in the region 4400–4650 cm?1 have been studied from spectra recorded with a high-resolution Fourier transform spectrometer (resolution better than 0.01 cm?1). Champion's Hamiltonian expansion, Canad. J. Phys.55, 1802 (1977), is applied to the problem of the two interacting F1 and F2 vibrational sublevels of this type of a band. As the P branch of ν2 + ν3 is strongly overlapped by neighboring bands, a combination-difference method, adapted to tetrahedral XY4 molecules has been developed to help assignments of lines. A fit of 700 transitions has been performed using 13 new effective constants in the case of 12CH4. In the case of 13CH4, 532 transitions have been fit to 18 constants. The known parameters, relative to the vibrational ground state and the ν3 state for both methanes, and the ν2 state for 12CH4 were fixed throughout. Most of the perturbed levels, up to J′ = 12, are well reproduced and the general agreement between experimental and calculated transitions is satisfactory with standard deviations of 0.047 cm?1 (12CH4) and 0.041 cm?1 (13CH4). The results (order of magnitude of obtained (ν2 + ν3) parameters and comparison of observed and computed intensities) indicate that the ν2 + ν3 band is perturbed by many other bands.  相似文献   

5.
Collisional satellite lines have been observed in fluorescence from nitrogen dioxide excited by the 4545-Å line of the argon laser. The 130,13 level of the (0, 8, 0) vibrational state is populated by the laser and undergoes collisionally induced transitions to the 110,11, 150,15, and 170,17 states. These collisionally populated states are identified by their fluorescence to the well-studied (0, 0, 0) and (0, 1, 0) levels of the ground electronic state. These satellite lines are also observed in fluorescence to the (0, 2, 0) and (0, 3, 0) vibrational levels of the ground electronic state. The wavenumbers of those lines, together with those from unrelaxed fluorescence and previously published microwave transitions, allow vibrational and rotational constants for the higher vibrational states to be determined more accurately than was previously possible. Several much weaker forbidden transitions have also been observed, including ΔKa = 0 through ?6 transitions in the (0, 8, 0)-(0, 0, 1) band.  相似文献   

6.
The excitation spectrum of NO2 was investigated in the blue region by using a Nd:YAG laser-pumped dye laser. The 463- and 474-nm bands of the 2B2-2A1 system were identified and analyzed using the simplification that occurs if the excitation spectrum is monitored at particular wavelengths. Band origins and rotational constants were obtained. Vibrational assignments have been given to these bands by comparing the Franck-Condon Factors calculated for the 2B2-2A1 system with the fluorescence intensities of bands going to different vibrational levels of the ground state. The vibrational assignments and molecular constants obtained in this work are (v1, v2, v3) = (3, 11, 0)ν0(K′ = 0) = 21584.1, B = 0.405, and ?′∥ = 0.05 cm?1 for the 463-nm band; and (v1, v2, v3) = (2, 12, 0), ν0(K′ = 1) = 21104.9, B = 0.408, and ?′∥ = 0.03 cm?1 for the 474-nm band.  相似文献   

7.
The purely isotropic Raman spectrum of the ν1 band, the ν2 + ν4 band (enhanced through interaction with ν1), and the 2ν2 band of 12CH4 was obtained with a spectral resolution of 0.30–0.35 cm?1 from exposures with different orientations of the linearly polarized exciting light. The ν2 + ν4 and 2ν2 bands show partially resolved rotational structure. The spectra are interpreted in terms of a model which takes explicitly into account vibrational and rovibrational interactions with other vibrational states, using molecular constants determined primarily from infrared spectra. The computed contours are in excellent agreement with the experimental ones and the observed and calculated peak wavenumbers agree within one tenth of the spectral resolution limit, except for a small region near the ν1 band. The good overall agreement represents an independent check on the overall correctness of the previously reported molecular constants. A detailed discussion is given of the contributions to the intensities of individual transitions from the three transition moment matrix elements, which in an isolated-band model are the intensity parameters of the ν1, 2ν4, and 2ν2 isotropic bands, respectively.  相似文献   

8.
We have generated thep-cyanobenzyl radical in supersonic free expansion, and measured the vibrationally and rotationally resolved laser induced fluorescence (LIF) excitation spectra and the LIF dispersed spectra from the single vibronic levels (SVL) in the green-blue region. The lowest energy band at 20 738 cm−1with the strongest intensity in the excitation spectrum has been assigned to the 000band of the visible spectrum, on the basis of the vibronic structures in the SVL dispersed spectra. Based on the band type of the 000band,a-type, determined from the rotationally resolved LIF excitation spectrum, we have definitely assigned the visible band to theD122B1–D012B1electronic transition. We have found, on the grounds of the vibrational analysis of the dispersed spectra, that the vibronic structure of the 22B1–12B1electronic transition of the benzyl type is characterized by totally symmetric fundamental modes, 1, 8a, and 9a.  相似文献   

9.
A diode laser spectrometer (resolution 0.0013 cm?1) was used to record, in the 12-μm region, high-quality spectra of the ν2 band of NO2. Using these spectra, it was possible to obtain the N2-broadening coefficients and an average self-broadening coefficient from measurements made for seven lines of this band. In addition, 30 single spin-component line intensities were measured. From them, through a least-squares fit, the purely vibrational transition moment of the ν2 band, as well as two correcting rotational terms involved in the expansion of the transition moment operator, were obtained. These results led to the determination of the dipole moment derivative x?q2 = ?0.06041 ± 0.0037 D. It was also demonstrated that there is good consistency between the correcting terms deduced from the observed intensities and their theoretical estimates. Finally, a complete spectrum of the ν2 band of NO2 was computed, providing a total band intensity Sv(ν2) = 0.542 × 10?18cm?1/molecule cm?2 at 296 K.  相似文献   

10.
Absolute intensities of the vibration-rotation lines of the CO2 401II←000 band 7734 cm-1 are measured under high-resolution, low-pressure conditions by use of a White-type 25-m base-path, absorption cell together with a 5-m Czerny-Turner spectrometer. The total band intensity SB, the purely vibrational transition moment
, and the vibration-rotation interaction constant ζ are calculated from the intensity measurements. The values obtained for these parameters are SB(401II) = (7.06±0.07) × 10-5 cm-2 atm-1293°K,
= (3.08±0.03)×10-5 debye, and ζ = (2.5±0.5)×10-4. The intensity of the associated “hot band” 411II←010 is also determined and found to be SB(411II←010) = (0.53±0.02)×10-5 cm-2 atm-1293°K.  相似文献   

11.
Doppler-free laser polarization spectroscopy has been used to record the (0, 0), (1, 1), and (2, 2) bands of the B2Σ+-X2Σ+ system for both Sr79Br and Sr81Br. With the help of microwave labeling and additional band selective detection of the laser-induced fluorescence a rotational analysis could be performed. The optical data were combined with the results of independent microwave measurements of the X2Σ+ state in a weighted least-squares fit. Local perturbations were observed in each vibrational state of B2Σ+. Bandhead positions of Δv = ±1 bands were used for the vibrational analysis.  相似文献   

12.
This work, besides its fundamental interest is mainly motivated by the atmospheric importance of formaldehyde. The 10-μm region is indeed a possible spectral domain for the detection of this molecule in the atmosphere and no line parameters are presently available in the atmospheric databases for H2CO in this spectral range. Using the experimental data available in the literature for the ν3, ν4, and ν6 bands [J. Chem. Phys. 91 (1989) 646 and references therein] and for the ν2 band [J. Mol. Spectrosc. 96 (1982) 353 and references therein] and adequate theoretical models it proved possible to reproduce satisfactorily the experimental data and to generate a list of line positions and intensities for the 5-10 μm region. The Hamiltonian model accounts for the various Coriolis-type resonances which perturb the energy levels of the 31, 41, and 61 vibrational states as well as for the weaker anharmonic resonances coupling the 21 and 31 energy levels. This is also the case for the line intensity calculations which allow one to reproduce satisfactorily the line by line intensity measurements as well as the integrated intensities available in the literature.  相似文献   

13.
The high-resolution Fourier transform absorption spectrum of an isotopic sample of nitrogen dioxide, 15N16O2, was recorded in the 3.4 μm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242 (1991) 367-377] a new analysis of the ν1 + ν3 band located at 2858.7077 cm−1 has been performed. This new assignment concerns (1 0 1) energy levels involving rotational quantum numbers up to Ka = 10 and N = 54. Using a theoretical model which accounts for both the electron spin-rotation resonances within each vibrational state and the Coriolis interactions between the (1 2 0) and (1 0 1) vibrational states, the spin-rotation energy levels of the (1 0 1) vibrational state could be reproduced within their experimental uncertainty. In this way, the precise vibrational energy, rotational, spin-rotation, and coupling constants were achieved for the {(1 2 0), (1 0 1)} interacting states of 15N16O2. Using these parameters and the transition moment operator which was obtained for the main isotopic species, 14N16O2, a comprehensive list of the line positions and intensities was generated for the ν1 + ν3 band of 15N16O2.  相似文献   

14.
Rotational line strengths in the Lyman and Werner bands of molecular hydrogen are affected by the nonadiabatic interaction between the B and C states. Numerical results are presented for the effect of this interaction on relative rotational line strengths for Vx = 0 and VB ≤ 25, Vc ≤ 9. The B-C interaction is shown to have a pronounced effect for many levels. This difference in rotational line strength factors from the usual Hönl-London factors should be taken into account when relating line oscillator strengths to band oscillator strengths. Relative rotational line strengths are also computed for transitions between C-state levels and excited vibrational levels in the X state. Comparison is made to the measured Werner band emission line intensities of Schmoranzer and Geiger [J. Chem. Phys., 59, 6153 (1973)].  相似文献   

15.
Four fluorescence progressions of the B0+-X1Σ+ band of IBr79 excited by a single-mode cw dye-laser have been observed and analyzed. Discrepancies in the reported rotational constants of the 1Σ+ state have been resolved and improved vibrational constants determined. A simple method of discriminating between IBr and interfering I2 fluorescence is described.  相似文献   

16.
The Fourier-transform spectrum of CH3F from 2800 to 3100 cm?1, obtained by Guelachvili in Orsay at a resolution of about 0.003 cm?1, was analyzed. The effective Hamiltonian used contained all symmetry allowed interactions up to second order in the Amat-Nielsen classification, together with selected third-order terms, amongst the set of nine vibrational basis functions represented by the states ν1(A1), ν4(E), 2ν2(A1), ν2 + ν5(E), 2ν50(A1), and 2ν5±2(E). A number of strong Fermi and Coriolis resonances are involved. The vibrational Hamiltonian matrix was not factorized beyond the requirements of symmetry. A total of 59 molecular parameters were refined in a simultaneous least-squares analysis to over 1500 upper-state energy levels for J ≤ 20 with a standard deviation of 0.013 cm?1. Although the standard deviation remains an order of magnitude greater than the precision of the measurements, this work breaks new ground in the simultaneous analysis of interacting symmetric top vibrational levels, in terms of the number of interacting vibrational states and the number of parameters in the Hamiltonian.  相似文献   

17.
By observing the decay of intensity of vibrational bands of the B2Σ+ - X2Σ+ and B2Σ+ - A2Πi systems, the lifetimes of the 0, 1, 2, 3 vibrational levels of the B2Σ+ state of CO+ has been measured. The values are respectively τ=(56.8±1.3), (61.6±0.9), (66.9±2.2) and (70.5±2.9) ns. The variation of the function Re(r?) cannot be obtained from the lifetime values of the B2Σ+ state.  相似文献   

18.
The ν5 and ν3 Raman bands of CH2D2 have been recorded with a resolution of 0.35 cm?1. The ν3 state is well known from infrared studies. Three hundred twenty-nine transitions of the ν5 band were analyzed, assuming an unperturbed upper state, giving a standard deviation on the fit of the upper-state energies of 0.037 cm?1, The constants A, B, C, ΔJ, ΔJK, and ΔK differed significantly from the ground-state values, and ν5 was determined as 1331.41 ± 0.05 cm?1. This work represents the first complete analysis of the fine structure of a rotation-vibrational Raman band for an asymmetric rotor. The ν5 state could not be analyzed in infrared so this investigation, once more, demonstrates the usefulness of the Raman method.  相似文献   

19.
The rotational structure of the 2B1 (K′ = 0) subbands of NO2 with v2 = 6, 7, 8, and 9 were analyzed by means of the time-gated excitation spectrum. The excitation spectrum monitored at ν2, 2ν2, or 3ν2 fluorescence band was fairly simplified in comparison to its corresponding absorption spectrum. The band origins and rotational constants are evaluated from the observed data: ν0 = 20205.0 cm?1, B′ = 0.374 cm?1 for v2 = 6; ν0 = 21104.4 cm?1, B′ = 0.374 cm?1 for v2 = 7; ν0 = 22001.9 cm?1, B′ = 0.375 cm?1 for v2 = 8ν0 = 22898.0 cm?1, B′ = 0.375 cm?1 for v2 = 9. The value of B extrapolated to v′ = 0 is 0.370 cm?1. This value corresponds to the bond length of 1.19 Å. Fluorescence decays of these excited levels were also studied. Radiative lifetimes obtained by extrapolation to zero pressure from the 1τ – P plots were 25–40 μsec. The short-lived excited levels previously reported by some authors were not found.  相似文献   

20.
Lines of the 3ν23 “forbidden” band of 12C16O2 have been identified in the 2000-cm?1 region of a long-path, 0.01-cm?1 resolution laboratory absorption spectrum. This band has detectable intensity due to Δl = 2 Fermi interactions between the upper level and the nearby ν1 + ν2 and 3ν21 levels. Intensities of 18 lines of this band have been measured using a nonlinear least-squares spectral fitting technique. The intensities are enhanced at high J and an expression for the intensity distribution as derived by Toth [Appl. Opt.23, 1825–1834 (1984)] is used for the analysis. In terms of the total sample pressure, the vibrational band intensity is 0.194 ± 0.008 × 10?30 cm?1/molecule-cm?2 at 296 K. The coefficient in the F factor is analogous to the Coriolis coefficient ξ and has been determined to be ?0.0413 ± 0.0015. As expected by theory, its value is very close to that of ξ for the related ν1 + ν2 band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号