首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The specific heat C and thermal conductivity κ of polybutadiene are characteristic of all non-crystalline materials at temperatures below ≈ K, reflecting the presence of localized excitations. The changes in C and κ with variation in crosslinking suggest that the relaxation times of the localized excitations may vary with crosslink density. Extension of an elastomer does not reveal a change in density of localized excitations as monitored by measuring κ, possibly because other phonon scattering mechanisms mask the effect. For T ? 10 K the phonon mean-free-path is independent of the microscopic anisotropy of the elastomer.  相似文献   

2.
The structural dynamic factor S(Q, ω) of liquid 4He has been measured by inelastic neutron scattering in films of different thickness at temperatures from 0.6 to 0.05 K. The measurements were performed on an IN6 spectrometer (Institut Laue-Langevin, France). Analysis of the obtained experimental data on S(Q, ω) made it possible to establish the main parameters of surface excitations arising in a helium film and their dependences on the film temperature and thickness. The measurements showed that surface excitations arise in a helium film at a thickness of about two to three atomic layers, and the film thickness plays a decisive role in the formation of surface excitations.  相似文献   

3.
Thermal conductivity of the improper ferroic Tb2(MoO4)3 was measured in the range 0.3 K–100 K by the method of the stationary heat flow. An additional maximum in thermal conductivity observed at 0.45 K is due to the anomaly of specific heat corresponding to the antiferromagnetic phase transition. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present low-temperature measurements of the specific heat and the thermal conductivity for the three solid phases of n-butanol, namely glass, crystal and “glacial” phases. Whereas crystal and glass ones are found to exhibit the expected thermal behavior for crystalline and non-crystalline solids, respectively (i.e. Debye theory for crystals, and universal low-temperature properties with a boson peak and a concomitant plateau in the thermal conductivity for glasses), the so-called “glacial phase” behaves as a very defective crystal, confirming earlier work that identifies it as a mixed phase of nanocrystallites and a disordered matrix. We have also measured longitudinal and transverse sound velocities at low temperatures for the glass phase. The elastic Debye coefficient and Debye temperature of the glass determined from these measurements are found to agree very well with the calorimetric ones obtained from a SPM analysis of the specific heat.  相似文献   

5.
The magnetic susceptibility, conductivity, magnetoresistance (MR) and Hall effect of copper-doped carbon aerogels are measured and compared with corresponding results from the original carbon aerogels. The experimental results indicate that the temperature-dependent magnetic susceptibility of the copper-doped and of the original carbon aerogels is well fit by a Curie function at low temperatures. The copper-doped carbon aerogels show a higher susceptibility and spin concentration than the original carbon aerogel. After doping by copper, the materials exhibit a more linear current-voltage curve than the original carbon aerogel under the same measurement conditions. The electrical resistance of the copper-doped carbon aerogels is strikingly lower than that of the original carbon aerogels, and decreases with increasing copper content in the samples. The temperature-dependent resistivity ρ(T) of all of the copper-doped and original carbon aerogels can be fitted by an exp(T−1/2) dependence for T<100 K. The copper-doped and pristine carbon aerogels follow a quadratic MR behavior Δρ/ρ=AB2 in the magnetic field range B investigated (up to 5 T), except at very low temperatures (T<4 K).  相似文献   

6.
The objective of this study is to understand the effect of low temperature sol-gel synthesis on the microstructural properties of lithium [xLi2O-(1−x)SiO2; x=0.1-0.8 in steps of 0.1] and silver [xAg2O-(1−x)SiO2; x=0.1-0.8 in steps of 0.1] silicate xerogels via solid state nuclear magnetic resonance (NMR) and X-ray absorption near edge structure (XANES) techniques. The Li silicate xerogels were analyzed with solid-state 7Li and 29Si NMR and the Ag silicate xerogels were studied with Ag XANES. At high Li loading, 7Li NMR shows quadrupolar satellite transitions attributed to LiNO3, a phase also found with X-ray diffraction (XRD). At low Li loading, both NMR and XRD results show an amorphous xerogel. The silicate network is monitored with 29Si NMR and shows evidence of Li incorporation. For the Ag silicate xerogels, Ag-L-III XANES spectral studies show a local environment similar to AgNO3 for low Ag loading levels, and an increased Ag oxidation for higher Ag loading levels. Si K edge spectra show only an amorphous phase, with no evidence of a crystalline quartz phase. The electrical conductivity of the lithium silicates was estimated from impedance data and the highest conductivity is exhibited by the 0.3Li2O-0.7SiO2 composition xerogel. The conductivity dependence on loading level strongly suggests that the observed conductivity is due to Li+ mobility. However, further experimental studies are needed to rule out the possibility that the conductivity is, at least in part, due to H+ mobility. Variation in conductivity is explained qualitatively using existing theoretical models.  相似文献   

7.
The low-energy excitations of a very fragile glass-former (in the sense of Angell), poly(vinyl chloride), have been studied by low-frequency Raman scattering and by measurements of the low-temperature heat capacity and thermal conductivity. Two different samples were investigated : one with a crystallinity of about 15%, the other quenched and amorphous, as measured by small-angle neutron scattering. The boson peak in Raman scattering was observed in both samples even at room temperature. A clear correspondance between the Raman boson peak, the excess of heat capacity and the plateau of thermal conductivity was shown. It is confirmed that the boson peak or the heat capacity excess are relatively small in this very fragile glass-former. However it is deduced that the high concentration of tunnelling systems in the amorphous sample is the result of a rapid quenching rather than an intrinsic property of fragile glass-formers.  相似文献   

8.
We present new experimental results on the propagation and damping of the high frequency acoustic-like modes in vitreous silica. The new data are measured by means of the inelastic x-ray scattering technique down to an exchanged wavevector Q ∼ 0.9 nm − 1, at the limit of the instrument capabilities. Thanks to the continuous development of the technique, the new spectra are characterized by a very high signal to noise ratio when compared to previous experiments. The higher data quality finally allows for a reliable determination of the position and width of the inelastic excitations. The new data show that the sound damping Γ is marked by a frequency dependence compatible with the Rayleigh law, Γ ∼ ν4, for frequencies below the position of the excess vibrational modes at the boson peak. We show that the new data are in good agreement with estimates of the acoustic mean free path from the thermal conductivity, which take into account the peculiar plateau at a few Kelvin. The connection between the boson peak and the Rayleigh law is further confirmed by a comparison of the present data with literature data for the sound attenuation in a permanently densified silica sample.  相似文献   

9.
The specific heat of PTFE (Teflon) has been measured between 0.3 and 20 K at zero pressure, and between 1 and 20 K at five other pressures ranging up to 5.2 kbar. The specific heat anomalies typical of amorphous materials were observed. The linear term is smaller than for other organic polymers and is closer in magnitude to those of high purity glassy insulators. At zero pressure the T3 term in the specific heat exceeds that calculated from the sound velocities by 24%. The evolution with pressure of the T3 term and of the maximum in C/T3 are very similar, suggesting a close relation between the vibrational modes that contribute to these features in the specific heat. This result and the relatively simple structure of Teflon rule out independent localized oscillators as the source of the maximum in C/T3.  相似文献   

10.
The calcium aluminosilicate glass (CAS) is an important class of optical materials due to the many applications envisaged, including its use as active media for glass lasers. In order to study how Nd2O3 doping affects the mechanical and the thermo-optical properties of CAS glass, two series of CAS glass, doped with Nd2O3 up to 5 wt%, were prepared in a vacuum atmosphere. The rare earth changes the physical properties, and this influence of doping ion content is discussed for both the series of samples in terms of mechanical, thermal, and thermo-optical properties. The study analyzed hardness and elastic moduli, glass transition temperature, crystallization temperature, thermal diffusivity, specific heat, density, thermal conductivity, refractive index, and thermo-optical properties, like temperature coefficient of the optical path length (dS/dT). The results presented provide information about the sample’s structure, and show that for Nd2O3 concentration up to 5 wt% there were no significant changes in the glass host material.  相似文献   

11.
The dielectric constant and conductivity of 80% V2O5: 20% P2O5 glass has been measured in the frequency range 102 to 109Hz and in the temperature range 80 to 350°K. It is shown that the dielectric behaviour over these ranges is described by a Debye type relaxation process with distribution of relaxation times. A method is proposed to determine the width of distribution from the data at fixed frequencies and different temperatures. The width of distribution increases at frequencies ω > 10/τ, which leads to an a.c. conductivity at these frequencies almost linearly proportional to frequency and independent of temperature. The estimated value of the static dielectric constant of about 30 was found to decrease with temperature while the infinite frequency dielectric constant of 10 was independent of temperature. The carrier concentration calculated from the dielectric relaxation time and the d.c. conductivity through a thermal diffusion model shows reasonable agreement with direct measurement using electron paramagnetic resonance.  相似文献   

12.
Bulk amorphous chalcogenide samples of Ge20Te80−xSex (x = 0, 1, 2, 8) have been prepared using a melting-quench method, and characterized by the differential scanning calorimetry, X-ray powder diffraction, high-resolution transmission electron microscopy, specific heat and thermal conductivity measurements. The low temperature specific heat measurements identified some localized low-frequency oscillation modes (Einstein modes) in conjunction with a Debye-like behavior. It was found that with increasing Se concentration the characteristic Debye temperature did not change whereas the Einstein temperature slightly decreased. The lattice thermal conductivity of all Ge20Te80−xSex samples exhibited typical amorphous heat conduction behavior, which has been discussed in connection with the phonon mean free path and in the context of a phenomenological model of heat conduction for highly disordered system.  相似文献   

13.
The low field conduction mechanism in amorphous Nb2O5 doped with Nb is investigated by measurements of the ac conductivity as a function of frequency (3 Hz?6 × 106 Hz), dc conductivity as a function of temperature (100–400 K), capacitance as a function of frequency (3 Hz?6 × 106 Hz) and conductance G as a function of voltage at 103 Hz. Loss tangent and quality factor data are also given because of their technical and scientific relevance. Evidence for hopping conduction at low applied fields is presented by the following results: (1) a monotonic increase in ac conductivity σ(ω)αωn where 0.5 < n < 1.0 in the range 3 Hz?6 × 106 Hz; (2) a linear dependence of current on voltage at low fields; and (3) low activation energy for dc conduction with a transition at 210 K to a still lower activation energy; and (4) a decrease in polarizability with frequency. At high fields, E > 105 V/cm, dc conductivity is dominated by the field emission mechanism of the Poole-Frenkel or Poole type.  相似文献   

14.
Nd:YVO4 crystal has been grown by Czochralski method. The data of thermal expansion and specific heat have been measured. The thermal expansion coefficients along a- and c-axis are a1 = 2.2 x 10-6 /K, and a3 = 8.4 x 10-6 /K respectively. The specific heat is 24.6 cal/mol x K at 330 K. The large anisotropy along c- and a-axis of thermal expansion coefficients is explained by the structure of YVO4 crystal. 921 mW output laser at 1.06 mikrom has been obtained with a 3 mm x 3 mm x 1mm crystal sample when pumped by 1840 mW cw laser diode, and the slope efficiency is 55.5%.  相似文献   

15.
The thermal conductivity of two single-crystal samples of pyrite FeS2 are investigated by the method of stationary longitudinal heat flux in the temperature range 50–300 K. The low electrical conductivity of the crystals with a small impurity content causes an identical value of experimental lattice thermal conductivity. The temperature dependence of the phonon mean free path is established.  相似文献   

16.
GaSe single crystals grown by Bridgman method have been doped by ion implantation technique. The samples were bombarded in the direction parallel to c‐axis by Si ion beam of about 100 keV to doses of 1 × 1016 ions/cm2 at room temperature. The effects of Si implantation with annealing at 500 and 600 °C on the electrical properties have been studied by measuring the temperature dependent conductivity and photoconductivity under different illumination intensities in the temperature range of 100–320 K. It is observed that Si implantation increases the room temperature conductivity 10−7 to 10−3 (Ω‐cm)−1 depending on the post annealing temperature. The analysis of temperature dependent conductivity shows that at high temperature region above 200 K, the transport mechanism is dominated by thermal excitation in the doped and undoped GaSe samples. At lower temperatures, the conduction of carriers is dominated by variable range hopping mechanism in the implanted samples. Annealing of the samples at and above 600 °C weakens the temperature dependence of the conductivity and photoconductivity. This indicates that annealing of the implanted samples activates Si‐atoms and increases structural deformations and stacking faults. The same behavior was observed from photoconductivity measurements. Hence, photocurrent‐illumination intensity dependence in the implanted samples obeys the power low IpcΦn with n between 1 and 2 which is an indication of continuous distribution of localized states in the band gap. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Single crystals of L‐Arginine Fluoride (LAF) have been grown by the slow evaporation technique, and the crystalline perfection was studied by HRXRD. Optical absorption studies reveal the lower cut off wavelength (280 nm) and the band gap (5.1 eV). The dielectric constant and dielectric loss have been measured as a function of frequency (42 Hz–5 MHz) and temperature (307‐368K) and the activation energy is 77 μeV. The thermal transport properties such as thermal conductivity (0.88 ± 0.02 W/mK) and specific heat capacity (482±24 J/kg/K) have been estimated by the photopyroelectric technique. The nonlinear refractive index n2, is found to be of the order of 10−13 cm2/W by the Z‐scan technique.  相似文献   

18.
In this work, the thermal lens spectrometry was applied to measure the thermo-optical properties of Nd2O3-doped low silica calcium aluminosilicate glasses as a function of temperature, between 4.3 and 300 K. The thermal relaxation calorimetry was used to determine the specific heat, cp. The results showed a decrease of the thermal diffusivity of about one order of magnitude from 4.3 K up to 300 K, with a T?1 dependence in the interval between 20 and 70 K and a T?0.35 between 4.3 and 20 K. The fluorescence quantum efficiencies of the doped samples were calculated down to 50 K, showing a variation of the order of 12% and 25% for the samples with 0.6 and 1.04 mol% of Nd2O3, respectively. In addition, the temperature corresponding to the maximum in cp/T3, the so-called boson peak, was observed at about 17 K for the undoped sample and at lower temperatures for the doped glasses. In conclusion, our results showed the ability of the time resolved thermal lens to determine the thermo-optical properties of glasses at temperatures lower than 300 K, bringing new possibilities for experiments in a wide range of optical materials.  相似文献   

19.
Crystallization growth rates (Vg) on boron and phosphorus doped a-Si C VD films are obtained using conductivity measurements during isothermal annealings at temperatures 510<TA<650°C. For boron doping, the associated activation energy of Vg is equal to 2.9 eV in the whole doping range (up to 2 × 10?3 B2H6), whereas Vg increases by a factor 4 in the range 0 ? 7 × 10?6 and remains almost constant for higher doping. In this low range, the neutral dangling bonds became positively charged and non paramagnetic by electronic compensation with the acceptors, and the E.S.R. signal decreases from 1019 to 1017 cm?3. These results indicate clearly that dangling bonds and their charge state play an important role in the growth rate process.  相似文献   

20.
Dc conductivity, absorption coefficient, photoconductivity, and magnetoresistance of phosphorus-doped amorphous Si films prepared by chemical vapor deposition (CVD) have been measured as a function of doping ratio. These results indicate that phosphorus doping reduces localized states in the mobility gap, narrows the tailing width below the extended states, and that phosphorus donors form the impurity band at 0.15 eV below Ec at a doping ratio of about 1×10-2. It is also found that electronic properties of CVD amorphous Si can be controlled in a wide range by substitutional doping of phosphorus atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号