首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetX 1, ...,X n be events in a probability space. Let ϱi be the probabilityX i occurs. Let ϱ be the probability that none of theX i occur. LetG be a graph on [n] so that for 1 ≦i≦n X i is independent of ≈X j ‖(i, j)∉G≈. Letf(d) be the sup of thosex such that if ϱ1, ..., ϱ n x andG has maximum degree ≦d then ϱ>0. We showf(1)=1/2,f(d)=(d−1) d−1 d −d ford≧2. Hence df(d)=1/e. This answers a question posed by Spencer in [2]. We also find a sharp bound for ϱ in terms of the ϱ i andG.  相似文献   

2.
Fix two distinct parallel linese andf. A 2-interval is the union of an interval one and an interval onf. We study thetransversal number τ (ℋ) of families of 2-intervals ℋ. This is the cardinality of the smallest set which intersects every 2-interval in ℋ. A Gyárfás and J. Lehel [6] proved that τ(ℋ)=O(υ(ℋ)2) where ν(ℋ) is the maximum number of disjoint 2-intervals in ℋ. In the present paper we prove the tight bond τ(ℋ)≤2v(ℋ). Our result has applications in the estimation of the transversal number of other types of set systems. The method we use is topological. We associate a simplicial complexK with our system of 2-intervals and prove that a given subcomplex is contractible inK unless the required transversal exists. Then we construct a cocycle of (another subcomplex of)K to prove that the subcomplex is not contractible inK. We hope that this approach will be applicable to a wider variety of combinatorial optimization problems. Supported by the NSF grant No. CCR-92-00788 and the (Hungarian) National Scientific Research Fund (OTKA) grant No. T4271. The author was visiting the Computation and Automation Institute of the Hungarian Academy of Sciences while part of this research was done.  相似文献   

3.
We consider complex-valued functions fL 1(ℝ+), where ℝ+:=[0,∞), and prove sufficient conditions under which the sine Fourier transform [^(f)]s\hat{f}_{s} and the cosine Fourier transform [^(f)]c\hat{f}_{c} belong to one of the Lipschitz classes Lip (α) and lip (α) for some 0<α≦1, or to one of the Zygmund classes Zyg (α) and zyg (α) for some 0<α≦2. These sufficient conditions are best possible in the sense that they are also necessary if f(x)≧0 almost everywhere.  相似文献   

4.
Aregression is a functiong from a partially ordered set to itself such thatg(x)≦x for allz. Amonotone k-chain is a chain ofk elementsx 1<x 2 <...<x k such thatg(x 1)≦g(x 2)≦...≦g(x k ). If a partial order has sufficiently many elements compared to the size of its largest antichain, every regression on it will have a monotone (k + 1)-chain. Fixingw, letf(w, k) be the smallest number such that every regression on every partial order with size leastf(w, k) but no antichain larger thanw has a monotone (k + 1)-chain. We show thatf(w, k)=(w+1) k . Dedicated to Paul Erdős on his seventieth birthday Research supported in part by the National Science Foundation under ISP-80-11451.  相似文献   

5.
We give lower bounds on the number of distinct values of the Ramanujan function τ(n), nx, and on the number of distinct residues of τ(n), nx, modulo a prime ℓ. We also show that for any prime ℓ the values τ(n), n ≦ ℓ4, form a finite additive basis modulo ℓ. Received: 6 October 2004  相似文献   

6.
7.
A weighted hypergraph is a hypergraph H = (V, E) with a weighting function , where R is the set of reals. A multiset S V generates a partial hypergraph H S with edges , where both the cardinality and the total weight w(S) are counted with multiplicities of vertices in S. The transversal number of H is represented by (H). We prove the following: there exists a function f(n) such that, for any weighted n-Helly hypergraph H, (H B ) 1, for all multisets B V if and only if (H A ) 1, for all multisets A V with . We provide lower and upper bounds for f(n) using a link between indecomposable hypergraphs and critical weighted n-Helly hypergraphs.* On leave from Computing and Automation Research Institute, Hungarian Academy of Sciences.  相似文献   

8.
Let H be a hypergraph on n vertices and m edges with all edges of size at least four. The transversal number τ(H) of H is the minimum number of vertices that intersect every edge. Lai and Chang [An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133] proved that τ(H) ≤ 2(n+m)/9, while Chvátal and McDiarmid [Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26] proved that τ(H) ≤ (n + 2m)/6. In this paper, we characterize the connected hypergraphs that achieve equality in the Lai-Chang bound and in the Chvátal-McDiarmid bound.  相似文献   

9.
LetP be a family ofn boxes inR d (with edges parallel to the coordinate axes). Fork=0, 1, 2, …, denote byf k (P) the number of subfamilies ofP of sizek+1 with non-empty intersection. We show that iff r (P)=0 for somern, then where thef k (n, d, r) are ceg196rtain definite numbers defined by (3.4) below. The result is best possible for eachk. Fork=1 it was conjectured by G. Kalai (Israel J. Math.48 (1984), 161–174). As an application, we prove a ‘fractional’ Helly theorem for families of boxes inR d .  相似文献   

10.
In the following,G denotes a finite group,r(G) the number of conjugacy classes ofG, β(G) the number of minimal normal subgroups ofG andα(G) the number of conjugate classes ofG not contained in the socleS(G). Let Φ j = {G|β(G) =r(G) −j}. In this paper, the family Φ11 is classified. In addition, from a simple inspection of the groups withr(G) =b conjugate classes that appear in ϒ j =1/11 Φ j , we obtain all finite groups satisfying one of the following conditions: (1)r(G) = 12; (2)r(G) = 13 andβ(G) > 1; …; (9)r(G) = 20 andβ(G) > 8; (10)r(G) =n andβ(G) =na with 1 ≦a ≦ 11, for each integern ≧ 21. Also, we obtain all finite groupsG with 13 ≦r(G) ≦ 20,β(G) ≦r(G) − 12, and satisfying one of the following conditions: (i) 0 ≦α(G) ≦ 4; (ii) 5 ≦α(G) ≦ 10 andS(G) solvable.  相似文献   

11.
Theprofile of a hypergraph onn vertices is (f 0, f1, ...,f n) wheref i denotes the number ofi-element edges. The extreme points of the set of profiles is determined for certain hypergraph classes. The results contain many old theorems of extremal set theory as particular cases (Sperner. Erdős—Ko—Rado, Daykin—Frankl—Green—Hilton).  相似文献   

12.
C. Thomassen and M. Szegedy proved the existence of a functionf(s, t) such that the points of anyf(s, t)-connected graph have a decomposition into two non-empty sets such that the subgraphs induced by them ares-connected andt-connected, respectively. We prove, thatf(s, t) ≦ 4s+4t − 13 and examine a similar problem for the minimum degree.  相似文献   

13.
A Cohen-Macaulay complex is said to be balanced of typea=(a 1,a 2, ...,a s ) if its vertices can be colored usings colors so that every maximal face gets exactlya i vertices of thei:th color. Forb=(b 1,b 2, ...,b s ), 0≦ba, letf b denote the number of faces havingb i vertices of thei:th color. Our main result gives a characterization of thef-vectorsf=(f b )0≦ba or equivalently theh-vectors, which can arise in this way from balanced Cohen-Macaulay complexes. As part of the proof we establish a generalization of Macaulay’s compression theorem to colored multicomplexes. Finally, a combinatorial shifting technique for multicomplexes is used to give a new simple proof of the original Macaulay theorem and another closely related result. First and third authors partially supported by the National Science Foundation.  相似文献   

14.
Idealization of a decomposition theorem   总被引:1,自引:1,他引:0  
In 1986, Tong [13] proved that a function f : (X,τ)→(Y,φ) is continuous if and only if it is α-continuous and A-continuous. We extend this decomposition of continuity in terms of ideals. First, we introduce the notions of regular-I-closed sets, A I-sets and A I -continuous functions in ideal topological spaces and investigate their properties. Then, we show that a function f : (X,τ,I)→(Y, φ) is continuous if and only if it is α-I-continuous and A I-continuous. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The Knaster–Kuratowski–Mazurkiewicz (KKM) theorem is a powerful tool in many areas of mathematics. In this paper we introduce a version of the KKM theorem for trees and use it to prove several combinatorial theorems.A 2-tree hypergraph is a family of nonempty subsets of T R (where T and R are trees), each of which has a connected intersection with T and with R. A homogeneous 2-tree hypergraph is a family of subsets of T each of which is the union of two connected sets.For each such hypergraph H we denote by (H) the minimal cardinality of a set intersecting all sets in the hypergraph and by (H) the maximal number of disjoint sets in it.In this paper we prove that in a 2-tree hypergraph (H)2(H) and in a homogeneous 2-tree hypergraph (H)3(H). This improves the result of Alon [3], that (H)8(H) in both cases.Similar results are proved for d-tree hypergraphs and homogeneous d-tree hypergraphs, which are defined in a similar way. All the results improve the results of Alon [3] and generalize the results of Kaiser [1] for intervals.  相似文献   

16.
Let ℂ[−1,1] be the space of continuous functions on [−,1], and denote by Δ2 the set of convex functions f ∈ ℂ[−,1]. Also, let E n (f) and E n (2) (f) denote the degrees of best unconstrained and convex approximation of f ∈ Δ2 by algebraic polynomials of degree < n, respectively. Clearly, En (f) ≦ E n (2) (f), and Lorentz and Zeller proved that the inverse inequality E n (2) (f) ≦ cE n (f) is invalid even with the constant c = c(f) which depends on the function f ∈ Δ2. In this paper we prove, for every α > 0 and function f ∈ Δ2, that
where c(α) is a constant depending only on α. Validity of similar results for the class of piecewise convex functions having s convexity changes inside (−1,1) is also investigated. It turns out that there are substantial differences between the cases s≦ 1 and s ≧ 2. Dedicated to Jóska Szabados on his 70th birthday  相似文献   

17.
For a graphG let ℒ(G)=Σ{1/k contains a cycle of lengthk}. Erdős and Hajnal [1] introduced the real functionf(α)=inf {ℒ (G)|E(G)|/|V(G)|≧α} and suggested to study its properties. Obviouslyf(1)=0. We provef (k+1/k)≧(300k logk)−1 for all sufficiently largek, showing that sparse graphs of large girth must contain many cycles of different lengths.  相似文献   

18.
Let ℋ be a family ofr-subsets of a finite setX. SetD()= |{E:xE}|, (maximum degree). We say that ℋ is intersecting if for anyH,H′ ∈ ℋ we haveHH′ ≠ 0. In this case, obviously,D(ℋ)≧|ℋ|/r. According to a well-known conjectureD(ℋ)≧|ℋ|/(r−1+1/r). We prove a slightly stronger result. Let ℋ be anr-uniform, intersecting hypergraph. Then either it is a projective plane of orderr−1, consequentlyD(ℋ)=|ℋ|/(r−1+1/r), orD(ℋ)≧|ℋ|/(r−1). This is a corollary to a more general theorem on not necessarily intersecting hypergraphs.  相似文献   

19.
Intersection theorems with geometric consequences   总被引:3,自引:0,他引:3  
In this paper we prove that if is a family ofk-subsets of ann-set, μ0, μ1, ..., μs are distinct residues modp (p is a prime) such thatk ≡ μ0 (modp) and forF ≠ F′ we have |FF′| ≡ μi (modp) for somei, 1 ≦is, then ||≦( s n ). As a consequence we show that ifR n is covered bym sets withm<(1+o(1)) (1.2) n then there is one set within which all the distances are realised. It is left open whether the same conclusion holds for compositep.  相似文献   

20.
AHowell design of side s andorder 2n, or more briefly, anH(s, 2n), is ans×s array in which each cell either is empty or contains an unordered pair of elements from some 2n-set, sayX, such that (a) each row and each column is Latin (that is, every element ofX is in precisely one cell of each row and each column) and (b) every unordered pair of elements fromX is in at most one cell of the array. Atrivial Howell design is anH(s, 0) havingX=? and consisting of ans×s array of empty cells. A necessary condition onn ands for the existence of a nontrivialH(s, 2n) is that 0<ns≦2n-1. AnH(n+t, 2n) is said to contain a maximum trivial subdesign if somet×t subarray is theH(t, 0). This paper describes a recursive construction for Howell designs containing maximum trivial subdesigns and applies it to settle the existence question forH(n+1, 2n)’s: forn+1 a positive integer, there is anH(n+1, 2n) if and only ifn+1 ∉ {2, 3, 5}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号