首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sintered polyimide surfaces that were worn under macroscale conditions at different temperatures, were further characterised by contact-mode atomic force microscopy for getting insight in the tribophysical and -chemical processes at the micro- to nanoscale. Depending on the temperature, either mechanical interaction (23 °C < T < 100 °C), hydrolysis (120 °C < T < 140 °C), or imidisation (180 °C < T < 260 °C) results in different microscale surface characteristics. At low temperatures, surface brittleness and inter-grain fracture has been observed with an almost homogeneous friction pattern. At intermediate temperatures, the formation of a protecting local film leads to smoother surfaces with local lubricating properties. At high temperatures, different topographical and frictional patterns are observed depending on local imidisation or degradation. From AFM scans at the sub-micronscale, local debris depositions are observed and correspond to surface locations with locally reduced friction. From AFM scans at the nanoscale, polymer chain orientation is observed with formation of zig-zag or stretched molecular conformation: the latter is not induced by purely mechanical surface interactions or hydrolysis, but mainly results from tribochemically induced imidisation at high sliding temperatures. The present investigation describes the influences of local tribological interactions onto the macroscale wear behaviour of a polymer, and therefore aims at contributing to a better understanding of scaling between macro- to nanolevel tribological response.  相似文献   

2.
In this work, we present the implementation of Electronic Speckle Pattern Interferometry (ESPI), Digital Speckle Photography (DSP) and Digital Image Correlation (DIC) as complementary techniques to measure in-plane micro and macro displacement. The main advantage of ESPI is its great sensitivity to small displacements (smaller than the size of the speckle). However, the contrast of fringes in this technique is severely affected by de-correlation effects when the in-plane displacement exceeds the size of the speckle. To eliminate the de-correlation effects, we use the DSP technique. It is possible to generate artificial speckles, usually bigger than those generated by means of illumination of the sample with laser light. By combining DSP and DIC the displacement field can be obtained when the ESPI method cannot be applied due to image de-correlation. The experimental results show that the combination of these techniques is useful to analyze deformations over a wider range.  相似文献   

3.
We have studied the pearling instability induced on hollow tubular lipid vesicles by hydrophilic polymers with hydrophobic side groups along the backbone. The results show that the polymer concentration is coupled to local membrane curvature. The relaxation of a pearled tube is characterized by two different well-separated time scales, indicating two physical mechanisms. We present a model, which explains the observed phenomena and predicts polymer segregation according to local membrane curvature at late stages.  相似文献   

4.
5.
In an environmental coupled polymer, a variation of the conductivity is evaluated, which results from the external electron–phonon interaction coupling with the internal one. A quantized current appears under the external phonon coupling. The resonant tunnelling in the nanoscale polymer driven by the internal electron–phonon interaction is enhanced by the external phonon coupling. In addition, the external electron–phonon interaction softens the stiffness of the polymer.  相似文献   

6.
The morphological nature of discontinuous (jumplike) deformation is studied. Recording creep behavior of materials using a laser interferometer permits one to determine the parameters of deformation jumps on a micron scale. The objects of investigation were poly(dimethylsiloxane) (PDMS) and a composite material consisting of PDMS and quartz (SiO2). It is shown that the height and sharpness of jumps depend on the composition of the material and the stage of deformation. An analysis of differential scanning calorimetry (DSC) curves of the materials in the deformed and initial states suggests that deformation results in ordered domains in rubberlike polymers. This confirms the assumption that deformation jumps reflect the presence and the evolution of structural inhomogeneities in amorphous polymers.  相似文献   

7.
A micro-crack in silicon was experimentally investigated by using a combination of transmission electron microscopy and geometric phase analysis. The strain fields of the crack tip, with scales of a few tens of nanometers, were mapped. The crack tip dislocation emission and stress relief by dislocation generation around a crack tip can be proved. And, the strain field of an edge dislocation was compared with the Peierls–Nabarro dislocation model at the scale of a dislocation width. We show that the Peierls–Nabarro model is the appropriate theoretical model to describe the deformation fields of the dislocation core.  相似文献   

8.
Molecular dynamics simulations are employed to demonstrate that adhesive contact formation through classical jump to contact is mediated by extensive dislocation activity in metallic nanoparticles. The dislocations generated during jump to contact are completely annihilated by the completion of the adhesive contact, leaving the nanoparticles dislocation-free. This rapid and efficient jump to contact process is pseudoelastic, rather than purely elastic or plastic.  相似文献   

9.
The multiple α absorption of bulk-crystallized polyethylene (PE) was separated into the α1 and the α2 absorptions on the assumption that this α2 absorption is associated with shear deformation of lamellar crystals, i.e., has the same characteristics as in single crystal mats. The separated α1 mechanism is related to the molecular motions in the intermosaic block region. The α1 process is very sensitive to static and dynamic deformation, whereas the α2 process is not affected. Plastic deformation of bulk crystallized PE was analyzed in terms of true stress and true strain. The temperature dependence of the critical yield stress below 60°C showed the same magnitude of activation energy (26 kcal/mole) as that of α1. The leading mechanism of deformation at lower temperatures is the breakdown of lamellar crystals into mosaic blocks. Compressive deformation of solid-state extrudates along the molecular axis, giving rise to kink bands, was analyzed with X-ray goniometry and in terms of the strain-rate dependence of the yield stress. The deformation of the crystals in the kink bands occurred by superposition of intercrystallite slip (α1) and uniform shear deformation (α2). It was concluded that consideration of intermosaic slip mechanisms (α1), in addition to the shear deformation (α2) and the interlamellar deformation (β), is effective and helpful to understand the deformation process of crystalline polymers.  相似文献   

10.
Molecular relaxations determine the viscoelastic properties of polymers, which, in turn, control macroscopic processes like dewetting. Here, we demonstrate experimentally that the onset of rim instabilities is correlated with the longest relaxation ("reptation") time of the dewetting polymer. Conversely, such experiments allow us to determine the reptation time of polystyrene in thin films as a function of molecular weight. Our approach opens up new possibilities for testing rheological properties of polymers confined in thin films.  相似文献   

11.
The inhomogeneity in the creep rate of polymers on different scales of deformation has been studied by laser interferometry. The main results have been obtained for the amorphous-crystalline polymer polytetrafluoroethylene. The deformation characteristics are the oscillation periods of the rate (jumps of deformation), oscillation amplitudes of the rate, and the scatter of these quantities. Application of computer methods for processing of the results has made it possible to determine the difference and similarity between jumpwise deformations on different structural levels, including the nanolevel. For a more distinct separation of deformation levels, the measurements have been made in a magnetic field and outside the magnetic field. Deformation jumps have been found on five levels: from 4 nm to more than 10 μm. Introduction of a sample into a magnetic field changes the characteristics of jumps; in this case, the scatter in the values of jumps always increases, whereas their average value varies differently on different scale levels. The measurement of the parameters of deformation jumps on different scales allows one to study the laws of the development of the deformation process and the evolution of structural inhomogeneities.  相似文献   

12.
The example of Plexiglas irradiated with γ radiation to the dose of D = 330 kGy is used to demonstrate the presence of minor deformation jumps. Deformation levels are determined by deformation jumps values measured by the interferometric technique. These results support the position on the existence of domains from nanometers to tens of nanometers in size within amorphous polymers and allow one to study multilevel organization of the deformation process and determine the influence of external factors on various structures on the nanoscale and above.  相似文献   

13.
The variation of step deformation kinetics in solids is studied as a function of morphological factors. Oscillations of creep rate at micrometer increments of the amount of deformation, which reflect the step nature of the process, are investigated from an interferogram. It is shown that the plasticization of polymethyl methacrylate by dibutyl phthalate blurs the steps, while their height varies insignificantly. The results are explained using the concept of the netlike structure of amorphous polymers. The data obtained confirm the universal nature of jumps as a mode of evolution of deformation in various solids. The jumps reflect the cooperative nature of motion of kinetic units, and the regular variation of the characteristics of the jumps lends support to the definition of creep as a process of structural self-organization.  相似文献   

14.
A phenomenological jerky flow model was developed in which macroscale plastic strain rates are defined by dislocation kinetics. The model takes into account destructive processes governed by shear and bulk defect accumulation. At the heart of the model lie equations of solid mechanics and relaxation-type constitutive equations. A loaded elastoplastic solid is treated as a nonlinear dynamic system whose evolution, according to synergetic laws, is much contributed by negative and positive feedbacks expressed, respectively, through constitutive equations of the first group (relaxation equations) and constitutive equations of the second group (kinetic equations for deformation defect and damage accumulation rates). The negative feedback stabilizes deformation by relaxation, bringing the process to some local dynamic equilibrium. The positive feedback destabilizes deformation, driving the system to a critical state. Numerical experiment was performed in 2D and 3D statements. Statistical analysis of stress fluctuations about the average trend shows that the jerky flow model of an elastoplastic medium demonstrates evolution characteristic of nonlinear dynamic systems: through states of dynamic chaos and self-organized criticality to a global catastrophe.  相似文献   

15.
The transverse vibrations of a beam and the propagation of tension, compression, and shear deformation waves along the axis of a rod are studied by recording the electric field that appears under these conditions near the rod. Experiments are performed on samples made of various plastic materials in order to compare the effect of the properties of a material on the electric response during dynamic deformation, all other things being equal. Dynamic Young’s moduli are determined during bending vibrations and the propagation of longitudinal waves. It is shown that the location and type of antenna should be taken into account to adequately interpret a recorded signal and a dynamic mechanical process.  相似文献   

16.
Creep rates on short deformation base lines before and after a change in temperature and stresses were measured by interferometry to determine the activation energies and activation volumes of the process. It is shown that the activation parameters of polymer creep vary not only at a macroscopic level but also within the micron-size deformation steps. The largest potential barrier corresponds to the lowest rate in a step and plays the role of a “physical node.” The results confirm the supposition that micron-size jumps (steps) of polymer deformation are caused by the nonmonotonic nature of intermolecular interactions in microvolumes of this level. Fiz. Tverd. Tela (St. Petersburg) 40, 1635–1638 (September 1998)  相似文献   

17.
Face centered cubic metals deform mainly by propagating partial dislocations generating planar fault ribbons. How do metals deform if the size is smaller than the fault ribbons? We studied the elongation of Au and Pt nanorods by in?situ electron microscopy and ab?initio calculations. Planar fault activation barriers are so low that, for each temperature, a minimal rod size is required to become active for releasing elastic energy. Surface effects dominate deformation energetics; system size and shape determine the preferred fault gliding directions which induce different tensile and compressive behavior.  相似文献   

18.
Many different molecular processes that cause plastic deformation in polymers can be investigated by transmission electron microscopy (TEM). A short review of those deformation mechanisms is given in this paper using model morphologies and correlating them to the corresponding mechanical behavior.  相似文献   

19.
20.
Reversible thermal deformation coefficients (TDCs) of oriented samples of a flexible-chain polymer (polyethylene) and of a number of rigid-chain polymers were measured in the longitudinal and transverse directions near room temperature. The same samples were used to measure the TDCs of crystallites by x-ray diffraction. The magnitudes of the TDCs of macroscopic oriented samples and of constituting crystallites and the characteristics of the thermal deformation of flexible-chain and rigid-chain polymers are compared. A conclusion is made that the mechanisms that determine thermal deformation in the longitudinal and transverse directions for the flexible-chain and rigid-chain polymers are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号