首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nonaqueous-solution routes to metal oxide nanoparticles are a valuable alternative to the known aqueous sol-gel processes, offering advantages such as high crystallinity at low temperatures, robust synthesis parameters and ability to control the crystal growth without the use of surfactants. In the first part of the review we give a detailed overview of the various solution routes to metal oxides in organic solvents, with a strong focus on surfactant-free processes. In most of these synthesis approaches, the organic solvent plays the role of the reactant that provides the oxygen for the metal oxide, controls the crystal growth, influences particle shape, and, in some cases, also determines the assembly behavior. We have a closer look at the following reaction systems in this order: 1) metal halides in alcohols, 2) metal alkoxides, acetates, and acetylacetonates in alcohols, 3) metal alkoxides in ketones, and 4) metal acetylacetonates in benzylamine. All these systems offer some peculiarities with respect to each other, providing many possibilities to control and tailor the particle size and shape, as well as the surface and assembly properties. In the second part we present general mechanistic principles for aqueous and nonaqueous sol-gel processes, followed by the discussion of reaction pathways relevant for nanoparticle formation in organic solvents. Depending on the system several mechanisms have been postulated: 1) alkyl halide elimination, 2) elimination of organic ethers, 3) ester elimination, 4) C--C bond formation between benzylic alcohols and alkoxides, 5) ketimine and aldol-like condensation reactions, 6) oxidation of metal nanoparticles, and 7) thermal decomposition methods.  相似文献   

2.
3.
A sol-gel template technique has been put forward to synthesize single-crystalline semiconductor oxide nanowires, such as n-type SnO2 and p-type NiO. Scanning electron microscopy and transmission electron microscopy observations show that the oxide nanowires are single-crystal with average diameters in the range of 100-300 nm and lengths of over 10 microm. Photoluminescence (PL) spectra show a PL emission peak at 401 nm for n-type semiconductor SnO2, and a PL emission at 407 nm for p-type semiconductor NiO nanowires, respectively. Correspondingly, the observed violet-light emission at room temperature is attributed to near-band-edge emission for SnO2 nanowires and the 3d(7)4s-->3d8 transition of Ni2+ for NiO nanowires.  相似文献   

4.
5.
A novel class of organic-inorganic hybrids, the so-called cerasomes, which have a bilayer vesicular structure and a silicate surface, has been synthesized by combination of sol-gel reaction and self-assembly of organoalkoxysilanes with a molecular structure analogous to lipids. We have synthesized two cerasome-forming organoalkoxysilanes, N-[N-(3-triethoxysilyl)propylsuccinamoyl]dihexadecylamine (1) and N,N-dihexadecyl-N (alpha)-[6-[(3-triethoxysilyl)propyldimethylammonio]hexanoyl]glycinamide bromide (2), and investigated the synthetic conditions of the cerasomes and their structural characteristics. For the proamphiphilic 1, the cerasome was obtained under restricted pH conditions where acid-catalyzed hydrolysis of the triethoxysilyl moiety proceeded without disturbing the vesicle formation. In contrast, the amphiphilic 2, additionally having a hydrophilic quaternary ammonium group, formed stable dispersions of the cerasome in a wide pH range. The hydrolysis behavior of the triethoxysilyl groups was monitored by (1)H NMR spectroscopy. Morphology of the cerasomes having the liposomal vesicular structure was confirmed by TEM observations. Extent of the development of siloxane networks through condensation among the silanol groups on the cerasome surface was evaluated by using MALDI-TOF-MS spectrometry. Formation of oligomers of the cerasome-forming lipids in the vesicle was clearly confirmed. Due to the siloxane network formation, the cerasome showed remarkably high morphological stability compared with a reference liposome, as evaluated by surfactant dissolution measurements.  相似文献   

6.
Mesoporous films containing organic or biological functions within an organised array of cavities are produced by combining sol-gel, self-assembly of supramolecular templates and surface chemistry. This paper reviews the essential physics and chemical concepts behind the synthesis of these complex multifunctional materials.  相似文献   

7.
We report the exceptional reactivity towards dioxygen of a nanostructured organic-inorganic hybrid material due to the confinement of copper cyclam within a silica matrix. The key step is the metalation reaction of the ligand, which can occur before or after xerogel formation through the sol-gel process. The incorporation of a Cu(II) center into the material after xerogel formation leads to a bridged Cu(I)/Cu(II) mixed-valence dinuclear species. This complex exhibits a very high affinity towards dioxygen, attributable to auto-organization of the active species in the solid. The remarkable properties of these copper complexes in the silica matrix demonstrate a high cooperative effect for O(2) adsorption; this is induced by close confinement of the two copper ions leading to end-on mu-eta(1):eta(1)-peroxodicopper(II) complexes. The anisotropic packing of the tetraazamacrocycle in a lamellar structure induces an exceptional reactivity of these copper complexes. We show for the first time that the organic-inorganic environment of copper complexes in a silica matrix fully model the protecting role of protein in metalloenzymes. For the first time an oxygenated dicopper(II) complex can be isolated in a stable form at room temperature, and the reduced Cu(2) (I,I) species can be regenerated after several adsorption-desorption cycles. These data also demonstrate that the coordination scheme and reactivity of the copper cyclams within the solid are quite different from that observed in solution.  相似文献   

8.
9.
10.
Twenty-one hybrid materials incorporating cobalt(III) corrole complexes were synthesized by a sol-gel process or by grafting the metallocorrole onto a mesostructured silica of the SBA-15 type. All the materials show an almost infinite selectivity for carbon monoxide with respect to dinitrogen and dioxygen in the low-pressure domain where the chemisorption phenomenon is predominant. This peculiar property is of prime importance for an application as a CO sensor. The selectivity slightly decreases at high pressures where nonselective physisorption phenomena mainly occur. The percentage of active sites for CO chemisorption ranges from 22 to 64 %. This low percentage may be attributable to interactions between the cobalt(III) corroles with silanol or siloxane groups remaining at the surface of the materials which prevent further coordination of the CO molecule. Notably, the most efficient materials are those prepared in the presence of a protecting ligand (pyridine) during the gelation or the grafting process. The removal of this ligand after the gelation process releases a cavity around the cobalt ion that favors the coordination of a carbon monoxide molecule. The CO adsorption properties of the SBA-15 hybrid were not affected over a period of several months thus indicating a high stability of the material. Conversely, the xerogel capacities slowly decrease owing to the evolution of the material structure.  相似文献   

11.
12.
13.
We demonstrate a novel strategy for the preparation of mesoporous silica-supported, highly dispersed, stable metal and bimetal nanoparticles with both size and site control. The supporting mesoporous silica, functionalized by polyaminoamine (PAMAM) dendrimers, is prepared by repeated Michael addition with methyl acrylates (MA) and amidation reaction with ethylenediamine (EDA), by using aminopropyl-functionalized mesoporous silica as the starting material. The encapsulation of metal nanoparticles within the dendrimer-propagated mesoporous silica is achieved by the chemical reduction of metal-salt-impregnated dendrimer-mesoporous silica by using aqueous hydrazine. The site control of the metal or bimetal nanoparticles is accomplished by the localization of inter- or intradendrimeric nanoparticles within the mesoporous silica tunnels. The size of the encapsulated nanoparticles is controlled by their confinement to the nanocavity of the dendrimer and the mesopore. For Cu and Pd, particles locate at the lining of mesoporous tunnels, and have diameters of less than 2.0 nm. For Pd/Pt, particles locate at the middle of mesoporous tunnels and have diameters in the range of 2.0-4.2 nm. The Pd and Pd/Pt nanoparticles are very stable in air, whereas the Cu nanoparticles are stable only in an inert atmosphere.  相似文献   

14.
High-density arrays of titania nanoparticles were prepared using a polystyrene-b-poly(ethylene oxide) block copolymer (PS-b-PEO) as a template and a titanium tetraisopropoxide based sol-gel precursor as titania source via a spin-coating method. The hydrophilic titania sol-gel precursor was selectively incorporated into hydrophilic PEO domains of PS-b-PEO and form titania nanoparticle arrays, due to a microphase separation between the PS block and the sol-gel/PEO phase. Field emission scanning electron microscopy (FESEM) and scanning probe microscopy (SPM) images showed that the uniformity and long-range order of the titania/PEO domains improved with increasing sol-gel precursor amount. Grazing incidence small-angle X-ray scattering (GISAXS) results indicate that the ordered structures exist over large length scales. Titania nanocrystal arrays of anatase modification were obtained by calcination at 600 degrees C for 4 h. After calcination, separated particles were observed for low and medium amounts of sol-gel precursors. Films with higher precursor amounts showed wormlike structures due to the aggregation between neighboring particles. Removal of the polymer matrix via UV treatment leads to highly ordered arrays of amorphous titania while retaining the domain size and interparticle distance initially present in the hybrid films. Photoluminescence (PL) properties were investigated for samples before and after calcination. The PL intensity increases with the increasing amount of sol-gel precursor. Bands at 412 nm were ascribed to self-trapped exitons and bands at 461 and 502 nm to oxygen vacancies, respectively. Uncalcined or UV-treated samples also showed PL properties similar to calcined samples, indicating that the local environment of the titanium atoms is similar to the environment of the crystalline anatase modification.  相似文献   

15.
Ionic liquids are a new class of organic solvents with high polarity and a preorganized solvent structure. Very polar reactions can be carried out in these liquid in the absence of or with a controlled amount of water, and crystalline nanoparticles can be synthesized conveniently at ambient temperatures. The pronounced self-organization of the solvent is used in the synthesis of self-assembled, highly organized hybrid nanostructures with unparalleled quality. The extraordinary potential of ionic liquids in materials synthesis is described in this minireview and a physicochemical explanation is given.  相似文献   

16.
This paper reports on recent progress in the synthesis of nanostructured siloxane-organic hybrids based on the self-assembly of amphiphilic silicon-based precursors. A variety of ordered hybrid materials have been obtained by molecular design of the precursors. Alkoxysilanes and chlorosilanes with covalently attached hydrophobic organic tails are hydrolyzed to form amphiphilic molecules containing silanol groups, leading to the formation of layered (lamellar) structures. Transparent and oriented thin films of lamellar hybrids were prepared by the reaction in the presence of tetraalkoxysilane. In addition, the design of molecules having alkyl chains and large oligosiloxane heads led to the formation of mesophases consisting of cylindrical assemblies, providing a direct pathway to ordered porous silica. The synthesis, structural features, and formation processes of these hybrid mesostructures are discussed.  相似文献   

17.
The ability of chitosan biopolymer to coordinate vanadium, tungsten and molybdenum metallic species and to control their mineralisation growth provides a new family of surface-reactive organic-inorganic hybrid microspheres. Drying the resulting materials under supercritical conditions allowed the gel network dispersion to be retained, thereby leading to a macroporous catalyst with surface areas ranging from 253 to 278 m(2) g(-1). On account of the open framework structure of these microspheres, the redox species entangled within the fibrillar network of the polysaccharide aerogels were found to be active, selective and reusable catalysts for cinamylalcohol oxidations.  相似文献   

18.
19.
20.
A series of tris(hydroxymethyl)aminomethane (TRIS)‐based linear (bis(TRIS)) and triangular (tris(TRIS)) ligands has been synthesised and were covalently attached to the Wells–Dawson type cluster [P2V3W15O62]9? to generate a series of nanometer‐sized inorganic–organic hybrid polyoxometalate clusters. These huge hybrids, with a molecular mass similar to that of small proteins in the range of ≈10–16 kDa, were unambiguously characterised by using high‐resolution ESI‐MS. The ESI‐MS spectra of these compounds revealed, in negative ion mode, a characteristic pattern showing distinct groups of peaks corresponding to different anionic charge states ranging from 3? to 8? for the hybrids. Each peak in these individual groups could be unambiguously assigned to the corresponding hybrid cluster anion with varying combinations of tetrabutylammonium (TBA) and other cations. This study therefore highlights the prowess of the high‐resolution ESI‐MS for the unambiguous characterisation of large, nanoscale, inorganic–organic hybrid clusters that have huge mass, of the order of 10–16 kDa. Also, the designed synthesis of these compounds points to the fact that we were able to achieve a great deal of structural pre‐design in the synthesis of these inorganic–organic hybrid polyoxometalates (POMs) by means of a ligand design route, which is often not possible in traditional “one‐pot” POM synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号