首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study stationary solutions of the Schrödinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form \(U\left( x \right) = \sum _{j = 1}^nV\left( {{x_j}} \right),x = \left( {{x_1}, \ldots ,{x_n}} \right) \in {\mathbb{R}^n}\), with a monotonically increasing function V (y). We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on xj. We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.  相似文献   

2.
The main objective of this paper is to study some qualitative behavior of the solutions of the two difference equations
$ {x_{n + 1}} = {{{a{x_n} - b{x_{n - k}}}} \left/ {{\left( {c{x_n} - d{x_{n - k}}} \right)}} \right.}\quad n = 0,\,1,\,2, \ldots, $
and
$ {x_{n + 1}} = {{{a{x_{n - k}} + b{x_n}}} \left/ {{\left( {c{x_n} - d{x_{n - k}}} \right)}} \right.}\quad n = 0,\,1,\,2, \ldots, $
where the initial conditions x???k, ?, x???1, x0 are arbitrary positive real numbers and the coefficients a, b, c, and d are positive constants, while k is a positive integer number.
  相似文献   

3.
Let {x n } be a sequence of complex numbers and let \({\Delta^nx_j = \sum\nolimits_{k=0}^{n} (-1)^k\break\left(\begin{array}{l}n\\ k\\\end{array} \right)x_{n-k+j}}\) . In this paper, we will show that if \({ |x_n| = O(n^k)}\) , as n → ∞ for some positive integer k, and \({n|\Delta^n x_j|^{\frac{1}{n}} \to 0}\) as n→ ∞, then \({\Delta^{k+1} x_j = 0}\) . More importantly, applications to the orbits of operators and invariant subspace problem are also given; this helps to improve former results obtained by Gelfand–Hille, Mbekhta–Zemánek and others.  相似文献   

4.
In 1968 S.M. Ulam proposed the problem: “When is it true that by changing a little the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?’’. In 1978 according to P.M. Gruber this kind of problems is of particular interest in probability theory and in the case of functional equations of different types. In 1997 W. Schuster established a new vector quadratic identity on the basis of the well-known Euler type theorem on quadrilaterals: If ABCD is a quadrilateral and M, N are the mid-points of the diagonals AC, BD as well as A′, B′, C′, D′ are the mid-points of the sides AB, BC, CD, DA, then |AB|2 + |BC|2 + |CD|2 + |DA|2 = 2|A′C′|2 + 2|B′D′|2 + 4|MN|2. Employing in this paper the above geometric identity we introduce the new Euler type quadratic functional equation
$\begin{array}{l}2{[}Q(x_{0} - x_{1}+Q(x_{1}-x_{2})+Q(x_{2}- x_{3})+Q(x_{3}-x_{0}){]}\\\qquad = Q(x_{0}-x_{1}-x_{2}+x_{3})+Q(x_{0} + x_{1}-x_{2}-x_{3})+2Q(x_{0}-x_{1}+ x_{2}-x_{3})\end{array}$
for all vectors (x0, x1, x2, x3) X4, with X and Y linear spaces. For every xR set Q(x) = x2. Then the mapping Q : XY is quadratic. Note also that if Q : RR is quadratic, then we have Q(x) = Q(1)x2. Besides note that the geometric interpretation of the special example
$\begin{array}{l}2{[}(x_{0} - x_{1})^{2}+ (x_{1}-x_{2})^{2}+ (x_{2}-x_{3})^{2}+(x_{3}-x_{0})^{2}{]}\\\qquad = (x_{0}-x_{1}-x_{2} + x_{3})^{2}+(x_{0} + x_{1}-x_{2}-x_{3})^{2} + 2(x_{0}-x_{1}+ x_{2}-x_{3})^{2}\end{array}$
leads to the above-mentioned Euler type theorem on quadrilaterals ABCD with position vectors x0, x1, x2, x3 of vertices A, B, C, D, respectively. Then we solve the Ulam stability problem for the afore-mentioned equation, with non-linear Euler type quadratic mappings Q : XY.
  相似文献   

5.
In this paper, we study the existence of positive entire large and bounded radial positive solutions for the following nonlinear system
$$\left\{ {\begin{array}{*{20}c}{S_{k_1 } \left( {\lambda \left( {D^2 u_1 } \right)} \right) + a_1 \left( {\left| x \right|} \right)\left| {\nabla u_1 } \right|^{k_1 } = p_1 \left( {\left| x \right|} \right)f_1 \left( {u_2 } \right)} & {for x \in \mathbb{R}^N ,} \\{S_{k_2 } \left( {\lambda \left( {D^2 u_2 } \right)} \right) + a_2 \left( {\left| x \right|} \right)\left| {\nabla u_2 } \right|^{k_2 } = p_2 \left( {\left| x \right|} \right)f_2 \left( {u_1 } \right)} & {for x \in \mathbb{R}^N .} \\\end{array} } \right.$$
Here \({S_{{k_i}}}\left( {\lambda \left( {{D^2}{u_i}} \right)} \right)\) is the k i -Hessian operator, a 1, p 1, f 1, a 2, p 2 and f 2 are continuous functions.
  相似文献   

6.
The Dirichlet problem for a fourth-order elliptic equation with constant coefficients without first derivatives is considered in the region (layer) $\prod { = \left\{ {(x',x_n ) \in R^n |x' \in R^{n - 1} ,x_n \in (a,b)} \right\}} , - \infty < a < b < + \infty ,n \geqslant 3$ The first term of the asymptotics of the solution at infinity is obtained.  相似文献   

7.
Damien Roy 《Acta Mathematica》2011,206(2):325-362
Let \( \gamma = \frac{1}{2}\left( {1 + \sqrt {5} } \right) \) denote the golden ratio. H. Davenport and W. M. Schmidt showed in 1969 that, for each non-quadratic irrational real number ξ, there exists a constant c > 0 with the property that, for arbitrarily large values of X, the inequalities\( \left| {{x_0}} \right| \leqslant X,\,\,\,\left| {{x_0}\xi - {x_1}} \right| \leqslant c{X^{{{{ - 1}} \left/ {\gamma } \right.}}}\,\,\,{\text{and}}\,\,\,\left| {{x_0}{\xi^2} - {x_2}} \right| \leqslant c{X^{{{{ - 1}} \left/ {\gamma } \right.}}} \)admit no non-zero solution \( \left( {{x_0},{x_1},{x_2}} \right) \in {\mathbb{Z}^3} \). Their result is best possible in the sense that, conversely, there are countably many non-quadratic irrational real numbers ξ such that, for a larger value of c, the same inequalities admit a non-zero integer solution for each X ≥ 1. Such extremal numbers are transcendental and their set is stable under the action of \( {\text{G}}{{\text{L}}_2}\left( \mathbb{Z} \right) \) on \( \mathbb{R}\backslash \mathbb{Q} \) by linear fractional transformations. In this paper, it is shown that there exist extremal numbers ξ for which the Lagrange constant ν(ξ) = liminf q→∞ q||qξ|| is \( \frac{1}{3} \), the largest possible value for a non-quadratic number, and that there is a natural bijection between the \( {\text{G}}{{\text{L}}_2}\left( \mathbb{Z} \right) \)-equivalence classes of such numbers and the non-trivial solutions of Markoff’s equation.  相似文献   

8.
The authors study the following Dirichlet problem of a system involving fractional (p, q)-Laplacian operators:
$$\left\{ {\begin{array}{*{20}{c}} {\left( { - \Delta } \right)_p^su = \lambda a\left( x \right){{\left| u \right|}^{p - 2}}u + \lambda b\left( x \right){{\left| u \right|}^{\alpha - 2}}{{\left| v \right|}^\beta }u + \frac{{\mu \left( x \right)}}{{\alpha \delta }}{{\left| u \right|}^{\gamma - 2}}{{\left| v \right|}^\delta }uin\Omega ,} \\ {\left( { - \Delta } \right)_q^sv = \lambda c\left( x \right){{\left| v \right|}^{q - 2}}v + \lambda b\left( x \right){{\left| u \right|}^\alpha }{{\left| v \right|}^{\beta - 2}}v + \frac{{\mu \left( x \right)}}{{\beta \gamma }}{{\left| u \right|}^\gamma }{{\left| v \right|}^{\delta - 2}}vin\Omega ,} \\ {u = v = 0on{\mathbb{R}^N}\backslash \Omega ,} \end{array}} \right.$$
where λ > 0 is a real parameter, Ω is a bounded domain in R N , with boundary ?Ω Lipschitz continuous, s ∈ (0, 1), 1 < pq < ∞, sq < N, while (?Δ) p s u is the fractional p-Laplacian operator of u and, similarly, (?Δ) q s v is the fractional q-Laplacian operator of v. Since possibly pq, the classical definitions of the Nehari manifold for systems and of the Fibering mapping are not suitable. In this paper, the authors modify these definitions to solve the Dirichlet problem above. Then, by virtue of the properties of the first eigenvalue λ1 for a related system, they prove that there exists a positive solution for the problem when λ < λ1 by the modified definitions. Moreover, the authors obtain the bifurcation property when λ → λ1-. Finally, thanks to the Picone identity, a nonexistence result is also obtained when λ ≥ λ1.
  相似文献   

9.
In this work, cubature formulas for computation of integrals over the hypercube in R n
$C_n = \{ x = (x_1 ,x_2 ,...,x_n ) \in R^n | - 1 \leqslant x_i \leqslant 1,i = 1,2,...,n\} $
are constructed using Sobolev?s theorem. These formulas are precise for all polynomials of degree at most nine and are invariant under the group of all orthogonal transformations of the hyperoctahedron
$G_n = \left\{ {x = (x_1 ,x_2 ,...,x_n ) \in R^n |\sum\limits_{i = 1}^n {|x_i |} \leqslant 1} \right\}$
onto itself.
Section 1 contains introduction into the subject and a review of known results. In Sections 2 and 3, we determine parameters of the cubature formula for n = 4 and n = 3, respectively. Numerical results (the nodes and coefficients of the cubature formulas) are presented in Section 4.  相似文献   

10.
We consider a class of Hamilton Jacobi equations (in short, HJE) of type
$ u_t + \frac{1}{2}\big(|u_{x_1}|^2+ \cdots +|u_{x_{n-1}}|^2\big) + \frac{\mathrm{e}^u}{m}|u_{x_n}|^m=0, $
in ? n ×??+? and m?>?1, with bounded, Lipschitz continuous initial data. We give a Hopf-Lax type representation for the value function and also characterize the set of minimizing paths. It is shown that the minimizing paths in the representation of value function need not be straight lines. Then we consider HJE with Hamiltonian decreasing in u of type
$ u_t + H_1\big(u_{x_1},\ldots,u_{x_i}\big) + \mathrm{e}^{-u}H_2\big(u_{x_{i+1}},\ldots, u_{x_n}\big)=0 $
where H 1,H 2 are convex, homogeneous of degree n,m?>?1 respectively and the initial data is bounded, Lipschitz continuous. We prove that there exists a unique viscosity solution for this HJE in Lipschitz continuous class. We also give a representation formula for the value function.
  相似文献   

11.
The uncertain system
$x_{n + 1} = A_n x_n , n = 0,1,2, \ldots ,$
is considered, where the coefficients a ij (n) of the m×m matrix A n are functionals of any nature subject to the constraints
$\begin{array}{*{20}c} {\left| {a_{i,i} (n)} \right| \leqslant \alpha _ * < 1,} \\ {\left| {a_{i,j} (n)} \right| \leqslant \alpha _0 for j \geqslant i + 1,} \\ {\left| {a_{i,j} (n)} \right| \leqslant \delta for j < i.} \\ \end{array} $
Such systems include, in particular, switched-type systems, whose matrix A can take values in a given finite set.By using a special Lyapunov function, a bound δ ≤ δ(α0*) ensuring the global asymptotic stability of the system is found. In particular, the system is stable if the last inequality is replaced by a i,j (n) = 0 for j < i.It is shown that pulse-width modulated systems reduce to the uncertain systems under consideration; moreover, in the case of a pulse-width modulation of the first kind, the coefficients of the matrix A are functions of x(n), and in the case of a modulation of the second kind, they are functionals.  相似文献   

12.
Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2xnis also called the cone Laplacian. In this paper,by using Mellin-Fourier transform,we prove thatλk Cnk2 n for any k 1,where Cn=(nn+2)(2π)2(|B0|Bn)-2n,which gives the lower bounds of the Dirchlet eigenvalues of-ΔB. On the other hand,by using the Rayleigh-Ritz inequality,we deduce the upper bounds ofλk,i.e.,λk+1 1 +4n k2/nλ1. Combining the lower and upper bounds of λk,we can easily obtain the lower bound for the first Dirichlet eigenvalue λ1 Cn(1 +4n)-12n2.  相似文献   

13.
The estimate $\left| {\sum\nolimits_{x_1 ,...,x_n \in F_q } {x(f(x_1 ,...,x_n ))} } \right| \leqslant (d - 1)^n q^{n/2} $ is derived for the quadratic character Λ of a field Fq of q elements and a polynomial f of odd degree d over Fq under certain natural conditions.  相似文献   

14.
We obtain the operator norms of the n-dimensional fractional Hardy operator H α (0 < α < n) from weighted Lebesgue spaces \(L_{\left| x \right|^\rho }^p (\mathbb{R}^n )\) to weighted weak Lebesgue spaces \(L_{\left| x \right|^\beta }^{q,\infty } (\mathbb{R}^n )\).  相似文献   

15.
Divided differences forf (x, y) for completely irregular spacing of points (x i ,y i ) are developed here by a natural generalization of Newton's scheme. Existing bivariate schemes either iterate the one-dimensional scheme, thus constraining (x i ,y i ) to be at corners of rectangles, or give polynomials Σa jk x j y k having more coefficients than interpolation conditions. Here the generalizedn th divided difference is defined by (1)\(\left[ {01... n} \right] = \sum\limits_{i = 0}^n {A_i f\left( {x_i , y_i } \right)} \) where (2)\(\sum\limits_{i = 0}^n {A_i x_i^j , y_i^k = 0} \), and 1 for the last or (n+1)th equation, for every (j, k) wherej+k=0, 1, 2,... in the usual ascending order. The gen. div. diff. [01...n] is symmetric in (x i ,y i ), unchanged under translation, 0 forf (x, y) an, ascending binary polynomial as far asn terms, degree-lowering with respect to (X, Y) whenf(x, y) is any polynomialP(X+x, Y+y), and satisfies the 3-term recurrence relation (3) [01...n]=λ{[1...n]?[0...n?1]}, where (4) λ= |1...n|·|01...n?1|/|01...n|·|1...n?1|, the |...i...| denoting determinants inx i j y i k . The generalization of Newton's div. diff. formula is (5)
$$\begin{gathered} f\left( {x, y} \right) = f\left( {x_0 , y_0 } \right) - \frac{{\left| {\alpha 0} \right|}}{{\left| 0 \right|}}\left[ {01} \right] + \frac{{\left| {\alpha 01} \right|}}{{\left| {01} \right|}}\left[ {012} \right] - \frac{{\left| {\alpha 012} \right|}}{{\left| {012} \right|}}\left[ {0123} \right] + \cdots + \hfill \\ + \left( { - 1} \right)^n \frac{{\left| {\alpha 01 \ldots n - 1} \right|}}{{\left| {01 \ldots n - 1} \right|}}\left[ {01 \ldots n} \right] + \left( { - 1} \right)^{n + 1} \frac{{\left| {\alpha 01 \ldots n} \right|}}{{\left| {01 \ldots n} \right|}}\left[ {01 \ldots n} \right], \hfill \\ \end{gathered} $$  相似文献   

16.
We derive global gradient estimates for \(W^{1,p}_0(\Omega )\)-weak solutions to quasilinear elliptic equations of the form
$$\begin{aligned} \mathrm {div\,}\mathbf {a}(x,u,Du)=\mathrm {div\,}(|F|^{p-2}F) \end{aligned}$$
over n-dimensional Reifenberg flat domains. The nonlinear term of the elliptic differential operator is supposed to be small-BMO with respect to x and merely continuous in u. Our result highly improves the known regularity results available in the literature. Actually, we are able not only to weaken the Lipschitz continuity with respect to u of the nonlinearity to only uniform continuity, but we also find a very lower level of geometric assumption on the boundary of the domain to ensure a global character of the gradient estimates obtained.
  相似文献   

17.
The paper considers cubature formulas for calculating integrals of functions f(X), X = (x 1, …, x n ) which are defined on the n-dimensional unit hypercube K n = [0, 1] n and have integrable mixed derivatives of the kind \(\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)\), 0 ≤ α j ≤ 2. We estimate the errors R[f] = \(\smallint _{K^n } \) f(X)dX ? Σ k = 1 N c k f(X(k)) of cubature formulas (c k > 0) as functions of the weights c k of nodes X(k) and properties of integrable functions. The error is estimated in terms of the integrals of the derivatives of f over r-dimensional faces (rn) of the hypercube K n : |R(f)| ≤ \(\sum _{\alpha _j } \) G j )\(\int_{K^r } {\left| {\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)} \right|} \) dX r , where coefficients G j ) are criteria which depend only on parameters c k and X(k). We present an algorithm to calculate these criteria in the two- and n-dimensional cases. Examples are given. A particular case of the criteria is the discrepancy, and the algorithm proposed is a generalization of those used to compute the discrepancy. The results obtained can be used for optimization of cubature formulas as functions of c k and X(k).  相似文献   

18.
In this paper we study a Dirichlet-to-Neumann operator with respect to a second order elliptic operator with measurable coefficients, including first order terms, namely, the operator on \(L^2(\partial \Omega )\) given by \(\varphi \mapsto \partial _{\nu }u\) where u is a weak solution of
$$\begin{aligned} \left\{ \begin{aligned}&-\mathrm{div}\, (a\nabla u) +b\cdot \nabla u -\mathrm{div}\, (cu)+du =\lambda u \ \ \text {on}\ \Omega ,\\&u|_{\partial \Omega } =\varphi . \end{aligned} \right. \end{aligned}$$
Under suitable assumptions on the matrix-valued function a, on the vector fields b and c, and on the function d, we investigate positivity, sub-Markovianity, irreducibility and domination properties of the associated Dirichlet-to-Neumann semigroups.
  相似文献   

19.
Some new criteria for the oscillation of difference equations of the form
and
are established.  相似文献   

20.
We consider integral functionals in which the density has growth p i with respect to ${\frac{\partial u}{\partial x_i}}$ , like in $$\int\limits_{\Omega}\left( \left| \frac{\partial u}{\partial x_1}(x) \right|^{p_1} + \left|\frac{\partial u}{\partial x_2}(x)\right|^{p_2} + \cdots + \left|\frac{\partial u}{\partial x_n}(x) \right|^{p_n} \right) dx.$$ We show that higher integrability of the boundary datum forces minimizer to be more integrable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号