首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
This paper presents an immersed boundary method for compressible Navier–Stokes equations in irregular domains, based on a local radial basis function approximation. This approach allows one to define a reconstruction of the radial basis functions on each irregular interface cell to treat both the Dirichlet and Neumann boundary conditions accurately on the immersed interfaces. Several numerical examples, including problems with available analytical solutions and the well-documented flow past an airfoil, are presented to test the proposed method. The numerical results demonstrate that the proposed method provides accurate solutions for viscous compressible flows.  相似文献   

2.
A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses.  相似文献   

3.
A new method is developed to solve Biot's consolidation of a finite soil layer in the cylindrical coordinate system. Based on the governing equations of Biot's consolidation and the technique of Laplace transform, Fourier expansions and Hankel transform with respect to time t, coordinate θ and coordinate r, respectively, a relationship of displacements, stresses, excess pore water pressure and flux is established between the ground surface (z = 0) and an arbitrary depth z in the Laplace and Hankel transform domain. By referring to proper boundary conditions of the finite soil layer, the solutions for displacements, stresses, excess pore water pressure and flux of any point in the transform domain can be obtained. The actual solutions in the physical domain can be acquired by inverting the Laplace and the Hankel transforms.  相似文献   

4.
A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, and calculation grids are independent of the discontinuities and no remeshing are required with the crack growing. Based on Grif- fith fracture theory and Mohr-Coulumb criterion, a mixed fracture criterion for multiple cracks growth in brittle mate- rial is proposed. The method treats the junction and coales- cence of multiple cracks, and junction criterion and coales- cence criterion for brittle material are given, too. Besides, in order to overcome the tracking error in the level set ap- proximation for crack junction and coalescence, a dichotomy searching algorithm is proposed. Introduced the above the- ories into continuous-discontinuous cellular automaton, the present method can be applied to solving multiple crack growth in brittle material, and only cell stiffness is needed and no assembled global stiffness is needed. Some numerical examples are given to shown that the present method is efficient and accurate for crack junction, coalescence and percolation problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号