首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A family of bis(imino)pyridine iron neutral-ligand derivatives, ((iPr)PDI)FeL(n) ((iPr)PDI = 2,6-(2,6-iPr2-C6H3N=CMe)2C6H3N), has been synthesized from the corresponding bis(dinitrogen) complex, ((iPr)PDI)Fe(N2)2. When L is a strong-field ligand such as tBuNC or a chelating alkyl diphosphine such as DEPE (DEPE = 1,2-bis(diethylphosphino)ethane), a five-coordinate, diamagnetic compound results with no spectroscopic evidence for mixing of paramagnetic states. Reducing the field strength of the neutral donor to principally sigma-type ligands such as tBuNH2 or THT (THT = tetrahydrothiophene) also yielded diamagnetic compounds. However, the 1H NMR chemical shifts of the in-plane bis(imino)pyridine hydrogens exhibit a large chemical shift dispersion indicative of temperature-independent paramagnetism (TIP) arising from mixing of an S = 1 excited state via spin-orbit coupling. Metrical data from X-ray diffraction establish bis(imino)pyridine chelate reduction for each structural type, while M?ssbauer parameters and NMR spectroscopic data differentiate the spin states of the iron and identify contributions from paramagnetic excited states.  相似文献   

2.
The two-electron reduction chemistry of the aryl-substituted bis(aldimino)pyridine iron dibromide, ((iPr)PDAI)FeBr(2) ((iPr)PDAI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CH)(2)C(5)H(3)N), was explored with the goal of generating catalytically active iron compounds and comparing the electronic structure of the resulting compounds to the more well studied ketimine derivatives. Reduction of ((iPr)PDAI)FeBr(2) with excess 0.5% Na(Hg) in toluene solution under an N(2) atmosphere furnished the η(6)-arene complex, ((iPr)PDAI)Fe(η(6)-C(7)H(8)) rather than a dinitrogen derivative. Over time in pentane or diethyl ether solution, ((iPr)PDAI)Fe(η(6)-C(7)H(8)) underwent loss of arene and furnished the dimeric iron compound, [((iPr)PDAI)Fe](2). Crystallographic characterization established a diiron compound bridged through an η(2)-π interaction with an imine arm on an adjacent chelate. Superconducting quantum interference device (SQUID) magnetometry established two high spin ferrous centers each coupled to a triplet dianionic bis(aldimino)pyridine chelate. The data were modeled with two strongly antiferromagnetically coupled, high spin iron(II) centers each with an S = 1 [PDAI](2-) chelate. Two electron reduction of ((iPr)PDAI)FeBr(2) in the presence of 1,3-butadiene furnished ((iPr)PDAI)Fe(η(4)-C(4)H(6)), which serves as a precatalyst for olefin hydrogenation with modest turnover frequencies and catalyst lifetimes. Substitution of the trans-coordinated 1,3-butadiene ligand was accomplished with carbon monoxide and N,N-4-dimethylaminopyridine (DMAP) and furnished ((iPr)PDAI)Fe(CO)(2) and ((iPr)PDAI)Fe(DMAP), respectively. The molecular and electronic structures of these compounds were established by X-ray diffraction, NMR and Mo?ssbauer spectroscopy, and the results compared to the previously studied ketimine variants.  相似文献   

3.
We report a unique class of dinitrogen complexes of iron featuring sulfur donors in the ancillary ligand. The ligands utilized are related to the recently studied tris(phosphino)silyl ligands (2-R(2)PC(6)H(4))(3)Si (R = Ph, iPr) but have one or two phosphine arms replaced with thioether donors. Depending on the number of phosphine arms replaced, both mononuclear and dinuclear iron complexes with dinitrogen are accessible. These complexes contribute to a desirable class of model complexes that possess both dinitrogen and sulfur ligands in the immediate iron coordination sphere.  相似文献   

4.
5.
6.
Bis(imino)pyridine iron alkyl complexes bearing beta-hydrogens, ((iPr)PDI)FeR (((iPr)PDI = 2,6-(2,6-(i)Pr2-C6H3N=CMe)2C5H3N; R = Et, (n)Bu, (i)Bu, CH2 (cyclo)C5H 9; 1-R), were synthesized either by direct alkylation of ((iPr)PDI)FeCl (1-Cl) with the appropriate Grignard reagent or more typically by oxidative addition of the appropriate alkyl bromide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N2)2 (1-(N2)2). In the latter method, the formal oxidative addition reaction produced ((iPr)PDI)FeBr (1-Br), along with the desired iron alkyl, 1-R. Elucidation of the electronic structure of 1-Br and related 1-R derivatives by magnetic measurements, structural studies and NMR spectroscopy established high spin ferrous compounds antiferromagnetically coupled to chelate radical anions. Thus, the formal oxidative process is bis(imino)pyridine ligand-based (one electron is formally removed from each chelate, not the iron) during oxidative addition. The kinetic stability of each 1-R compound was assayed in benzene-d6 solution and found to produce a mixture of the corresponding alkane and alkene. The kinetic stability of the iron alkyl complexes was inversely correlated with the number of beta-hydrogens present. For example, the iron ethyl complex, 1-Et, underwent clean loss of ethane over the course of three hours, whereas the corresponding 1-(i)Bu compound had a half-life of over 12 h under identical conditions. The mechanism of the decomposition was studied with a series of deuterium labeling experiments and support a pathway involving initial beta-hydrogen elimination followed by cyclometalation of an isopropyl methyl group, demonstrating an overall transfer hydrogenation pathway. The relevance of such pathways to chain transfer in bis(imino)pyridine iron catalyzed olefin polymerization reactions is also presented.  相似文献   

7.
A family of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes has been prepared, and their electronic and molecular structures have been established by a combination of X-ray diffraction, Mo?ssbauer spectroscopy, magnetochemistry, and open-shell density functional theory. For the cationic complexes, [((iPr)PDI)Fe-R][BPh(4)] ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = CH(2)SiMe(3), CH(2)CMe(3), or CH(3)), which are known single-component ethylene polymerization catalysts, the data establish high spin ferrous compounds (S(Fe) = 2) with neutral, redox-innocent bis(imino)pyridine chelates. One-electron reduction to the corresponding neutral alkyls, ((iPr)PDI)Fe(CH(2)SiMe(3)) or ((iPr)PDI)Fe(CH(2)CMe(3)), is chelate-based, resulting in a bis(imino)pyridine radical anion (S(PDI) = 1/2) antiferromagnetically coupled to a high spin ferrous ion (S(Fe) = 2). The neutral neopentyl derivative was reduced by an additional electron and furnished the corresponding anion, [Li(Et(2)O)(3)][((iPr)PDI)Fe(CH(2)CMe(3))N(2)], with concomitant coordination of dinitrogen. The experimental and computational data establish that this S = 0 compound is best described as a low spin ferrous compound (S(Fe) = 0) with a closed-shell singlet bis(imino)pyridine dianion (S(PDI) = 0), demonstrating that the reduction is ligand-based. The change in field strength of the bis(imino)pyridine coupled with the placement of the alkyl ligand into the apical position of the molecule induced a spin state change at the iron center from high to low spin. The relevance of the compounds and their electronic structures to olefin polymerization catalysis is also presented.  相似文献   

8.
The bis(imino)pyridine iron dinitrogen compounds, ((iPr)PDI)Fe(N(2))(2) and [((Me)PDI)Fe(N(2))](2)(μ(2)-N(2)) ((R)PDI = 2,6-(2,6-R(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = (i)Pr, Me), promote the catalytic intermolecular [2π + 2π] cycloaddition of ethylene and butadiene to form vinylcyclobutane. Stoichiometric experiments resulted in isolation of a catalytically competent iron metallocycle intermediate, which was shown to undergo diene-induced C-C reductive elimination. Deuterium labeling experiments establish competitive cyclometalation of the bis(imino)pyridine aryl substituents during catalytic turnover.  相似文献   

9.
Reduction of Cp*WCl4 afforded the metalated complex (eta6-C5Me4CH2)(dmpe)W(H)Cl (1) (Cp* = C5Me5, dmpe = 1,2-bis(dimethylphosphino)ethane). Reactions with CO and H(2) suggested that 1 is in equilibrium with the 16-electron species [Cp(dmpe)WCl], and 1 was also shown to react with silanes R2SiH2 (R2 = Ph2 and PhMe) to give the tungsten(IV) silyl complexes Cp*(dmpe)(H)(Cl)W(SiHR2) (6a, R2 = Ph2; 6b, R2 = PhMe). Abstraction of the chloride ligand in 1 with LiB(C6F5)4 gave a reactive species that features a doubly metalated Cp ligand, [(eta7-C5Me3(CH2)2)(dmpe)W(H)2][B(C6F5)4] (4). In its reaction with dinitrogen, 4 behaves as a synthon for the 14-electron fragment [Cp*(dmpe)W]+, to give the dinuclear dinitrogen complex ([Cp*(dmpe)W]2(micro-N2)) [B(C6F5)4]2 (5). Hydrosilanes R2SiH2 (R2 = Ph2, PhMe, Me2, Dipp(H); Dipp = 2,6-diisopropylphenyl) were shown to react with 4 in double Si-H bond activation reactions to give the silylene complexes [Cp*(dmpe)H2W = SiR2][B(C6F5)4] (8a-d). Compounds 8a,b (R2 = Ph2 and PhMe, respectively) were also synthesized by abstraction of the chloride ligands from silyl complexes 6a,b. Dimethylsilylene complex 8c was found to react with chloroalkanes RCl (R = Me, Et) to liberate trialkylchlorosilanes RMe2SiCl. This reaction is discussed in the context of its relevance to the mechanism of the direct synthesis for the industrial production of alkylchlorosilanes.  相似文献   

10.
The reaction of a mixture of 1 equiv of PhPH(2) and 2 equiv of PhNHSiMe(2)CH(2)Cl with 4 equiv of Bu(n)Li followed by the addition of THF generates the lithiated ligand precursor [NPN]Li(2).(THF)(2) (where [NPN] = PhP(CH(2)SiMe(2)NPh)(2)). The reaction of [NPN]Li(2).(THF)(2) with TaMe(3)Cl(2) produces [NPN]TaMe(3), which reacts under H(2) to yield the diamagnetic dinuclear Ta(IV) tetrahydride ([NPN]Ta)(2)(mu-H)(4). This hydride reacts with N(2) with the loss of H(2) to produce ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)), which was characterized both in solution and in the solid state, and contains strongly activated N(2) bound in the unprecedented side-on end-on dinuclear bonding mode. A density functional theory calculation on the model complex [(H(3)P)(H(2)N)(2)Ta(mu-H)](2)(mu-eta(1):eta(2)-N(2)) provides insight into the molecular orbital interactions involved in the side-on end-on bonding mode of dinitrogen. The reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with propene generates the end-on bound dinitrogen complex ([NPN]Ta(CH(2)CH(2)CH(3)))(2)(mu-eta(1):eta(1)-N(2)), and the reaction of [NPN]Li(2).(THF)(2) with NbCl(3)(DME) generates the end-on bound dinitrogen complex ([NPN]NbCl)(2)(mu-eta(1):eta(1)-N(2)). These two end-on bound dinitrogen complexes provide evidence that the bridging hydride ligands are responsible for the unusual bonding mode of dinitrogen in ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)). The dinitrogen moiety in the side-on end-on mode is amenable to functionalization; the reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with PhCH(2)Br results in C-N bond formation to yield [NPN]Ta(mu-eta(1):eta(2)-N(2)CH(2)Ph)(mu-H)(2)TaBr[NPN]. Nitrogen-15 NMR spectral data are provided for all the tantalum-dinitrogen complexes and derivatives described.  相似文献   

11.
The oxidation and reduction of a redox-active aryl-substituted bis(imino)pyridine iron dicarbonyl has been explored to determine whether electron-transfer events are ligand- or metal-based or a combination of both. A series of bis(imino)pyridine iron dicarbonyl compounds, [((iPr)PDI)Fe(CO)(2)](-), ((iPr)PDI)Fe(CO)(2), and [((iPr)PDI)Fe(CO)(2)](+) [(iPr)PDI = 2,6-(2,6-(i)Pr(2)C(6)H(3)N═CMe)(2)C(5)H(3)N], which differ by three oxidation states, were prepared and the electronic structures evaluated using a combination of spectroscopic techniques and, in two cases, [((iPr)PDI)Fe(CO)(2)](+) and [((iPr)PDI)Fe(CO)(2)], metrical parameters from X-ray diffraction. The data establish that the cationic iron dicarbonyl complex is best described as a low-spin iron(I) compound (S(Fe) = ?) with a neutral bis(imino)pyridine chelate. The anionic iron dicarbonyl, [((iPr)PDI)Fe(CO)(2)](-), is also best described as an iron(I) compound but with a two-electron-reduced bis(imino)pyridine. The covalency of the neutral compound, ((iPr)PDI)Fe(CO)(2), suggests that both the oxidative and reductive events are not ligand- or metal-localized but a result of the cooperativity of both entities.  相似文献   

12.
Reduction of the bis(iminopyridine) FeCl(2) complex {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}FeCl(2) using NaH has led to the formation of a surprising variety of structures depending on the amount of reductant. Some of the species reported in this work were isolated from the same reaction mixture, and their structures suggest the presence of multiple pathways for dinitrogen activation. The reaction with 3 equiv of NaH afforded {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(20PhN-C=CH(2)](C(5)H(3)N)}Fe(micro,eta(2)-N(2))Na (THF) (1) containing one N(2) unit terminally bound to Fe and side-on attached to the Na atom. In the process, one of the two imine methyl groups has been deprotonated, transforming the neutral ligand into the corresponding monoanionic version. When 4 equiv were employed, two other dinitrogen complexes {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(2)PhN-C=CH(2)](C(5)H(3)N)}Fe(micro-N2)Na(Et(2)O)(3) (2) and {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe(micro-N(2))Na[Na(THF)(2)] (3) were obtained from the same reaction mixture. Complex 2 is chemically equivalent to 1, the different degree of solvation of the alkali cation being the factor apparently responsible for the sigma-bonding mode of ligation of the N(2) unit to Na, versus the pi-bonding mode featured in 1. In complex 3, the ligand remains neutral but a larger extent of reduction has been obtained, as indicated by the presence of two Na atoms in the structure. A further increase in the amount of reductant (12 equiv) afforded a mixture of {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(2)PhN-C=CH(2)](C(5)H(3)N)}Fe-N(2) (4) and [{2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe-N(2)](2)(micro-Na) [Na(THF)(2)](2) (5) which were isolated by fractional crystallization. Complex 4, also containing a terminally bonded N(2) unit and a deprotonated anionic ligand bearing no Na cations, appears to be the precursor of 1. The apparent contradiction that excess NaH is required for its successful isolation (4 is the least reduced complex of this series) is most likely explained by the formation of the partner product 5, which may tentatively be regarded as the result of aggregation between 1 and 3 (with the ligand system in its neutral form). Finally, reduction carried out in the presence of additional free ligand afforded {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe(eta(1)-N(2)){2,6-[2,6-(iPr)(2)PhN=C(CH(3))](20(NC(5)H(2))}[Na(THF)(2)] (6) and {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe{2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(NC(5)H(2))}Na(THF)(2)) (7). In both species, the Fe metal is bonded to the pyridine ring para position of an additional (L)Na unit. Complex 6 chemically differs from 7 (the major component) only for the presence of an end-on coordinated N(2).  相似文献   

13.
Sodium amalgam reduction of the bis(indenyl)zirconium dihalide complexes, (eta5-C9H5-1-iPr-3-Me)2ZrX2 (X = Cl, Br, I), yielded the corresponding end-on dinitrogen complexes, [(eta5-C9H5-1-iPr-3-Me)2Zr(NaX)]2(mu2, eta1, eta1-N2), with inclusion of 1 equiv of salt per zirconocene. The solid state structures of the chloro and iodo congeners establish short Zr N and elongated N N bonds, consistent with modest to strong activation of the coordinated dinitrogen molecule. Exposure of the N2 compounds to 1 atm of dihydrogen resulted in rapid N H bond formation to yield a hydrido zirconocene hydrazido compound concomitant with salt elimination. These studies establish a new structural type of zirconocene dinitrogen complex and demonstrate that side-on coordination of the N2 ligand in the ground state is not a prerequisite for dinitrogen hydrogenation.  相似文献   

14.
Bis(imino)pyridine iron dinitrogen and dialkyl complexes are well-defined precatalysts for the chemo- and regioselective reduction of aldehydes and ketones. Efficient carbonyl hydrosilylation is observed at low (0.1-1.0 mol %) catalyst loadings and with 2 equiv of either PhSiH(3) or Ph(2)SiH(2), representing one of the most active iron-catalyzed carbonyl reductions reported to date.  相似文献   

15.
Addition of 2 equiv of LiNMe(2) to the bis(imino)pyridine ferrous dichloride, ((i)(Pr)PDI)FeCl(2) ((i)(Pr)PDI = (2,6-(i)()Pr(2)-C(6)H(3)N=CMe)(2)C(5)H(3)N), resulted in deprotonation of the chelate methyl groups, yielding the bis(enamide)pyridine iron dimethylamine adduct, ((i)(Pr)PDEA)Fe(NHMe(2)) ((i)(Pr)PDEA = (2,6-(i)Pr(2)-C(6)H(3)NC=CH(2))(2)C(5)H(3)N). Performing a similar procedure with KN(SiMe(3))(2) in THF solution afforded the corresponding bis(THF) adduct, ((i)(Pr)PDEA)Fe(THF)(2). ((i)(Pr)PDEA)Fe(NHMe(2)) has also been prepared by addition of the free amine to the iron dialkyl complex, ((i)(Pr)PDI)Fe(CH(2)SiMe(3))(2), implicating formation of a transient iron amide that is sufficiently basic to deprotonate the bis(imino)pyridine methyl groups. Deprotonation of the amine ligand in ((i)(Pr)PDEA)Fe(NHMe(2)) has been accomplished by addition of amide bases to afford the ferrous amide-ate complexes, [((i)(Pr)PDEA)Fe(mu-NMe(2))M] (M = Li, K).  相似文献   

16.
Heteroleptic aminotroponiminate complexes of calcium and strontium have been prepared. The monomeric calcium complex [((iPr)2ATI)CaI(THF)3] 1 ((iPr)2ATI = N-isopropyl-2-(isopropylamino)troponiminate) and the corresponding dimeric strontium compound [( (iPr)2ATI)SrI(THF)2]2 2 were obtained by reaction of [((iPr)2ATI)K] and MI2. Whereas the mixed ligand compound of composition [((iPr)2ATI)Ca(iPrAT)]2 3 (iPrAT = 2-(isopropylamino)troponate) was not obtained via a salt metathesis but by reaction of [Ca(N(SiMe3)2)2(THF)2] with ( (iPr)2ATI)H and (iPrAT)H, the diphosphanylamido complex [( (iPr)2ATI)Ca((Ph2P)2N)(THF)2] was obtained by reaction of CaI2 with the potassium compounds [( (iPr)2ATI)K] and [K(THF)n][N(PPh2)2]. The single crystal X-ray structures of all compounds were established and the latter compound shows a eta2-coordination mode of the ligand via the nitrogen and one phosphorus atom.  相似文献   

17.
Both (PNP)Re(H)(4) and (PNP)ReH(cyclooctyne) (PNP(i)(Pr) = ((i)Pr(2)PCH(2)SiMe(2))(2)N) react with alkylpyridines NC(5)H(4)R to give first (PNP)ReH(2)(eta(2)-pyridyl) and cyclooctene and then, when not sterically blocked, (PNP)Re(eta(2)-pyridyl)(2) and cyclooctane. The latter are shown by NMR, X-ray diffraction, and DFT calculations to have several energetically competitive isomeric structures and pyridyl N donation in preference to PNP amide pi-donation. DFT studies support NMR solution evidence that the most stable bis pyridyl structure is one that is doubly eta(2)- with the pyridyl N donating to the metal center. When both ortho positions carry methyl substituents, cyclooctane and the carbyne complex (PNP)ReH(tbd1;C-pyridyl) are produced. Excess 2-vinyl pyridine reacts with (PNP)Re(H)(4) preferentially at the vinyl group, to give 2-ethyl pyridine and the sigma-vinyl complex (PNP)ReH[eta(2)-CH=CH(2-py)]. The DFT and X-ray structures show, by various comparisons, the ability of the PNP amide nitrogen to pi-donate to an otherwise unsaturated d(4) Re(III) center, showing short Re-N distances consistent with the presence of pi-donation.  相似文献   

18.
Addition of 1.0 equiv of Ph3SiH to [Cp*(PMe3)Rh(Me)(CH2Cl2)]+BAr'4- (1) resulted in release of methane and quantitative formation of [Cp*(PMe3)Rh(SiPh3)(CH2Cl2)]+BAr'4- (2). Subsequent addition of 1.0 equiv of MeCN to 2 caused immediate displacement of dichloromethane to form the eta1-nitrile adduct [Cp*(PMe3)Rh(SiPh3)(NCMe)]+BAr'4- (3). Upon standing at room-temperature overnight, complex 3 converted quantitatively to another product which has been characterized as the C-C activation product, [Cp*(PMe3)Rh(Me)(CNSiPh3)]+BAr'4- (5). Addition of other nitrile substrates (R-CN, R = Ph, (4-CF3)Ph, (4-MeO)Ph, iPr, tBu) to 2 also resulted in C-C activation of the R-CN bond to form [Cp*(PMe3)Rh(R)(CNSiPh3)]+BAr'4-. Evidence for an eta2-iminoacyl intermediate complex, [Cp*(PMe3)Rh(eta2-C(R)=N(SiPh3)]+BAr'4-, is also presented.  相似文献   

19.
Reduction of the five-coordinate iron(II) dihalide complexes (iPrPDI)FeX2 (iPrPDI = ((2,6-CHMe2)2C6H3N=CMe)2C5H3N; X = Cl, Br) with sodium amalgam under 1 atm of dinitrogen afforded the square pyramidal, high spin iron(0) bis(dinitrogen) complex (iPrPDI)Fe(N2)2. In solution, (iPrPDI)Fe(N2)2 loses 1 equiv of N2 to afford the mono(dinitrogen) adduct (iPrPDI)Fe(N2). Both dinitrogen compounds serve as effective precatalysts for the hydrogenation and hydrosilation of olefins and alkynes. Effecient catalytic reactions are observed with low catalyst loadings (< or = 0.3 mol %) at ambient temperature in nonpolar media. The catalytic hydrosilations are selective in forming the anti-Markovnikov product. Structural characterization of a high spin iron(0) alkyne and a bis(silane) sigma-complex has also been accomplished and in combination with isotopic labeling studies provides insight into the mechanism of both catalytic C-H and catalytic C-Si bond formation.  相似文献   

20.
The bis(imino)pyridine iron bis(dinitrogen) complex, (iPrPDI)Fe(N2)2 (iPrPDI = 2,6-(2,6-iPr2C6H3NCR)2C5H3N), serves as an efficient precursor for the catalytic [2pi + 2pi] cycloaddition of alpha,omega-dienes to yield the corresponding bicycles. For amine substrates, the rate of catalytic turnover increases with the size of the nitrogen substituents, demonstrating competing heterocycle coordination and product inhibition. In one case, a bis(imino)pyridine iron azobicycloheptane product was characterized by X-ray diffraction. Preliminary mechanistic studies highlight the importance of the redox activity of the bis(imino)pyridine ligand to maintain the ferrous oxidation state throughout the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号