首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Listeners detected interaural differences of time (ITDs) or level (ILDs) carried by single 4000-Hz Gabor clicks (Gaussian-windowed tone bursts) and trains of 16 such clicks repeating at an interclick interval (ICI) of 2, 5, or 10 ms. In separate conditions, target interaural differences favored the right ear by a constant amount for all clicks (condition RR), attained their peak value at onset and diminished linearly to 0 at offset (condition R0), or grew linearly from 0 at onset to a peak value at offset (condition 0R). Threshold ITDs and ILDs were determined adaptively in separate experiments for each of these conditions and for single clicks. ITD thresholds were found to be lower for 16-click trains than for single clicks at 10-ms ICI, regardless of stimulus condition. At 2-ms ICI, thresholds in RR and R0 conditions were similar to single click thresholds at 2-ms ICI; thresholds in the 0R condition were significantly worse than for single clicks at 2-ms ICI, consistent with strong rate-dependent onset dominance in listeners' temporal weighting of ITD. ILD thresholds, in contrast, were predominantly unaffected by ICI, suggesting little or no onset dominance for ILD of high-rate stimuli.  相似文献   

2.
Sound source localization on the horizontal plane is primarily determined by interaural time differences (ITDs) for low-frequency stimuli and by interaural level differences (ILDs) for high-frequency stimuli, but ITDs in high-frequency complex stimuli can also be used for localization. Of interest here is the relationship between the processing of high-frequency ITDs and that of low-frequency ITDs and high-frequency ILDs. A few similarities in human performance with high- and low-frequency ITDs have been taken as evidence for similar ITD processing across frequency regions. However, such similarities, unless accompanied by differences between ITD and ILD performance on the same measure, could potentially reflect processing attributes common to both ITDs and ILDs rather than to ITDs only. In the present experiment, both learning and variability patterns in human discrimination of ITDs in high-frequency amplitude-modulated tones were examined and compared to previously obtained data with low-frequency ITDs and high-frequency ILDs. Both patterns for high-frequency ITDs were more similar to those for low-frequency ITDs than for high-frequency ILDs. These results thus add to the evidence supporting similar ITD processing across frequency regions, and further suggest that both high- and low-frequency ITD processing is less modifiable and more noisy than ILD processing.  相似文献   

3.
The effect of onset interaural time differences (ITDs) on lateralization and detection was investigated for broadband pulse trains 250 ms long with a binaural fundamental frequency of 250 Hz. Within each train, ITDs of successive binaural pulse pairs alternated between two of three values (0 micros, 500 micros left-leading, and 500 micros right-leading) or were invariant. For the alternating conditions, the experimental manipulation was the choice of which of two ITDs was presented first (i.e., at stimulus onset). Lateralization, which was estimated using a broadband noise pointer with a listener adjustable interaural delay, was determined largely by the onset ITD. However, detection thresholds for the signals in left-leading or diotic continuous broadband noise were not affected by where the signals were lateralized. A quantitative analysis suggested that binaural masked thresholds for the pulse trains were well accounted for by the level and phase of harmonic components at 500 and 750 Hz. Detection thresholds obtained for brief stimuli (two binaural pulse or noise burst pairs) were also independent of which of two ITDs was presented first. The control of lateralization by onset cues appears to be based on mechanisms not essential for binaural detection.  相似文献   

4.
The changes in perception and in the binaural difference waveform (BD) for dichotic clicks with interaural time and level differences (ITDs and ILDs) are compared. Only beta, the first major peak of the BD, correlated with the perceptual measurements. Whenever beta is clearly present, the clicks are perceived as a unitary fused image. Whenever the clicks are perceived as not fused, beta is undetectable by our methods. The amplitude of beta remains nearly constant as the ITD is increased to about 1 ms, while the click's position is perceived as moving from midline toward the leading ear. Over about the next 0.2 ms, beta becomes undetectable, as the image stops moving and loses its fused quality. As the ILD is increased, beta amplitude decreases gradually, while the image remains unitary and moves toward the unattenuated earphone. Thus beta becomes undetectable for ILDs of 30 to 35 dB, and the dichotic clicks become indistinguishable from monotic clicks for ILDs of 44 to 53 dB. The ITD and ILD matching curve for beta latency is similar to the ITD and ILD psychophysical matching curve for lateralization. These results suggest that beta is a physiological correlate of the categorical percept, binaural fusion, and is generated by a brainstem structure essential for the preception of click lateralization.  相似文献   

5.
The purpose of this study was to test the hypothesis that stimuli characterized by "straight" trajectories of their patterns of cross correlation foster greater sensitivity to changes in interaural temporal disparities (ITDs) than do stimuli characterized by more "curved" trajectories of their patterns of cross correlation. To do so, sensitivity to changes in ITD was measured, as a function of duration, using a set of "reference" stimuli that yielded differing relative amounts of straightness within their patterns of cross correlation while keeping the dominant trajectory at or near midline. The relative amounts of straightness were manipulated by employing specific combinations of bandwidth, ITD, and interaural phase disparity (IPD) of Gaussian noises centered at 500 Hz. The results were consistent with expectations in that the patterning of the threshold ITDs revealed increasingly poorer sensitivity as greater and greater curvature was imposed on the dominant, "midline," trajectory. The variations in threshold ITD across the stimulus conditions can be accounted for quite well quantitatively by assuming either that the listeners based their judgments on changes in the position of the most central peak of the cross-correlation function or that they based their judgments on changes in the centroid of a second-level cross-correlation function. In a second experiment, binaural detection was measured using a subset of the reference stimuli as maskers. As expected, sensitivity was poorest with the maskers characterized by the greatest curvature, which were also those having the lowest interaural correlation.  相似文献   

6.
This study examined spatial release from masking (SRM) when a target talker was masked by competing talkers or by other types of sounds. The focus was on the role of interaural time differences (ITDs) and time-varying interaural level differences (ILDs) under conditions varying in the strength of informational masking (IM). In the first experiment, a target talker was masked by two other talkers that were either colocated with the target or were symmetrically spatially separated from the target with the stimuli presented through loudspeakers. The sounds were filtered into different frequency regions to restrict the available interaural cues. The largest SRM occurred for the broadband condition followed by a low-pass condition. However, even the highest frequency bandpass-filtered condition (3-6 kHz) yielded a significant SRM. In the second experiment the stimuli were presented via earphones. The listeners identified the speech of a target talker masked by one or two other talkers or noises when the maskers were colocated with the target or were perceptually separated by ITDs. The results revealed a complex pattern of masking in which the factors affecting performance in colocated and spatially separated conditions are to a large degree independent.  相似文献   

7.
The relative potency of onset/offset and envelope-based ongoing interaural time delays (ITDs) was assessed using high-frequency stimuli. A two-cue, two-alternative, forced-choice adaptive task was employed to measure threshold ITDs with 100% sinusoidally amplitude-modulated tones centered at 4 kHz. Modulation rates of 125, 250, and 350 Hz were tested with durations of 32, 90, or 240 ms. In the first experiment, ITDs to be detected were imposed only at the onset/offset, only within the ongoing portion, or within both the onset/offset and ongoing portions of the stimuli. Results indicated that ongoing ITDs dominated onset/offset ITDs. The relative potency of ongoing ITDs was directly proportional to duration and inversely proportional to modulation rate. Quantitative analysis suggested that listeners effectively combine onset/offset and ongoing ITDs. Furthermore, the data could be largely accounted for by assuming that listeners attend to the interaural decorrelation of the stimulus resulting from onset/offset and/or ongoing ITDs. A second experiment showed that, (1) overall, an ongoing ITD of one-half period of the envelope had little impact on listeners' sensitivity to delays of the onset/offset and (2) sensitivity to delays within the onset/offset portion of the waveform was reduced by roving the delay within the ongoing portion of the waveform.  相似文献   

8.
Dynamic-range compression acting independently at each ear in a bilateral hearing-aid or cochlear-implant fitting can alter interaural level differences (ILDs) potentially affecting spatial perception. The influence of compression on the lateral position of sounds was studied in normal-hearing listeners using virtual acoustic stimuli. In a lateralization task, listeners indicated the leftmost and rightmost extents of the auditory event and reported whether they heard (1) a single, stationary image, (2) a moving/gradually broadening image, or (3) a split image. Fast-acting compression significantly affected the perceived position of high-pass sounds. For sounds with abrupt onsets and offsets, compression shifted the entire image to a more central position. For sounds containing gradual onsets and offsets, including speech, compression increased the occurrence of moving and split images by up to 57 percentage points and increased the perceived lateral extent of the auditory event. The severity of the effects was reduced when undisturbed low-frequency binaural cues were made available. At high frequencies, listeners gave increased weight to ILDs relative to interaural time differences carried in the envelope when compression caused ILDs to change dynamically at low rates, although individual differences were apparent. Specific conditions are identified in which compression is likely to affect spatial perception.  相似文献   

9.
Five bilateral cochlear implant users were tested for their localization abilities and speech understanding in noise, for both monaural and binaural listening conditions. They also participated in lateralization tasks to assess the impact of variations in interaural time delays (ITDs) and interaural level differences (ILDs) for electrical pulse trains under direct computer control. The localization task used pink noise bursts presented from an eight-loudspeaker array spanning an arc of approximately 108 degrees in front of the listeners at ear level (0-degree elevation). Subjects showed large benefits from bilateral device use compared to either side alone. Typical root-mean-square (rms) averaged errors across all eight loudspeakers in the array were about 10 degrees for bilateral device use and ranged from 20 degrees to 60 degrees using either ear alone. Speech reception thresholds (SRTs) were measured for sentences presented from directly in front of the listeners (0 degrees) in spectrally matching speech-weighted noise at either 0 degrees, +90 degrees or -90 degrees for four subjects out of five tested who could perform the task. For noise to either side, bilateral device use showed a substantial benefit over unilateral device use when noise was ipsilateral to the unilateral device. This was primarily because of monaural head-shadow effects, which resulted in robust SRT improvements (P<0.001) of about 4 to 5 dB when ipsilateral and contralateral noise positions were compared. The additional benefit of using both ears compared to the shadowed ear (i.e., binaural unmasking) was only 1 or 2 dB and less robust (P = 0.04). Results from the lateralization studies showed consistently good sensitivity to ILDs; better than the smallest level adjustment available in the implants (0.17 dB) for some subjects. Sensitivity to ITDs was moderate on the other hand, typically of the order of 100 micros. ITD sensitivity deteriorated rapidly when stimulation rates for unmodulated pulse-trains increased above a few hundred Hz but at 800 pps showed sensitivity comparable to 50-pps pulse-trains when a 50-Hz modulation was applied. In our opinion, these results clearly demonstrate important benefits are available from bilateral implantation, both for localizing sounds (in quiet) and for listening in noise when signal and noise sources are spatially separated. The data do indicate, however, that effects of interaural timing cues are weaker than those from interaural level cues and according to our psychophysical findings rely on the availability of low-rate information below a few hundred Hz.  相似文献   

10.
Experiments were conducted with a single, bilateral cochlear implant user to examine interaural level and time-delay cues that putatively underlie the design and efficacy of bilateral implant systems. The subject's two implants were of different types but custom equipment allowed presentation of controlled bilateral stimuli, particularly those with specified interaural time difference (ITD) and interaural level difference (ILD) cues. A lateralization task was used to measure the effect of these cues on the perceived location of the sensations elicited. For trains of fixed-amplitude, biphasic current pulses at 100 pps, the subject demonstrated sensitivity to an ITD of 300 micros, providing evidence of access to binaural information. The choice of bilateral electrode pair greatly influenced ITD sensitivity, suggesting that electrode pairings are likely to be an important consideration in the effort to provide binaural advantages. The selection of bilateral electrode pairs showing sensitivity to ITD was partially aided by comparisons of the pitch elicited by individual electrodes in each ear (when stimulated alone with fixed-amplitude current pulses at 813 pps): specifically, interaural electrodes with similar pitches were more likely (but not certain) to show ITD sensitivity. Significant changes in lateral position occurred with specific electrode pairs. With five bilateral electrode pairs of 14 tested, ITDs of 300 and 600 micros moved an auditory image significantly from right to left. With these same pairs, ILD changes of approximately 11% of the dynamic range (in microApp) moved an auditory image from the far left to the far right-significantly farther than the nine pairs not showing significant ITD sensitivity. However, even these nine pairs did show response changes as a function of the interaural (or confounding monaural) level cue. Overall, insofar as the access to bilateral cues demonstrated herein generalizes to other subjects, it provides hope that the normal binaural advantages for speech recognition and sound localization can be made available to bilateral implant users.  相似文献   

11.
Thresholds of ongoing interaural time difference (ITD) were obtained from normal-hearing and hearing-impaired listeners who had high-frequency, sensorineural hearing loss. Several stimuli (a 500-Hz sinusoid, a narrow-band noise centered at 500 Hz, a sinusoidally amplitude-modulated 4000-Hz tone, and a narrow-band noise centered at 4000 Hz) and two criteria [equal sound-pressure level (Eq SPL) and equal sensation level (Eq SL)] for determining the level of stimuli presented to each listener were employed. The ITD thresholds and slopes of the psychometric functions were elevated for hearing-impaired listeners for the two high-frequency stimuli in comparison to: the listener's own low-frequency thresholds; and data obtained from normal-hearing listeners for stimuli presented with Eq SPL interaurally. The two groups of listeners required similar ITDs to reach threshold when stimuli were presented at Eq SLs to each ear. For low-frequency stimuli, the ITD thresholds of the hearing-impaired listener were generally slightly greater than those obtained from the normal-hearing listeners. Whether these stimuli were presented at either Eq SPL or Eq SL did not differentially affect the ITD thresholds across groups.  相似文献   

12.
It has long been recognized that listeners are sensitive to interaural temporal disparities (ITDs) of low-frequency (i.e., below 1600 Hz) stimuli. Within the last three decades, it has often been demonstrated that listeners are also sensitive to ITDs within the envelope of high-frequency, complex stimuli. Because these studies, for the most part, employed discrimination tasks, few data exist concerning the extent of laterality produced by ITDs as a function of the spectral locus of the stimulus. To this end, we employed an acoustic "pointing" task in which listeners varied the interaural intensity difference of a 500-Hz narrow-band noise (the pointer) so that it matched the intracranial position of a second, experimenter-controlled stimulus (the target). Targets were sinusoidally amplitude-modulated tones centered on 500 Hz, 1, 2, 3, or 4 kHz and modulated at rates ranging from 50 to 800 Hz. Targets were presented with either the entire waveform delayed or with only the envelope delayed. Our results suggest that: (1) for low-frequency targets, lateralization is influenced by ITDs in the envelope but is dominated by ITDs in the fine structure; (2) for high-frequency targets, envelope-based delays produce displacements of the acoustic images which are affected greatly by the rate of modulation; rather large extents of laterality could be produced with high rates of modulation; these data are consistent with those obtained previously in discrimination experiments; (3) for low rates of modulation (e.g., 100 Hz), delays of the entire waveform (both envelope and fine structure) produce much greater displacements of the acoustic image for low-frequency than for high-frequency targets (where fine-structure-based cues are not utilizable); (4) there appear to be no consistent relations among extent of laterality, rate of modulation, and the frequency of the carrier within and across listeners.  相似文献   

13.
This study tests how peripheral auditory processing and spectral dominance impact lateralization of precedence effect (PE) stimuli consisting of a pair of leading and lagging clicks. Predictions from a model whose parameters were set from established physiological results were tested with specific behavioral experiments. To generate predictions, an auditory nerve model drove a binaural, cross correlation computation whose outputs were summed across frequency using weightings derived from past physiological studies. The model predicted that lateralization (1) depends on stimulus center frequency and the inter-stimulus delay (ISD) between leading and lagging clicks for narrowband clicks and (2) changes differently with lead click level for different ISDs. Behaviorally, subjects lateralized narrowband and wideband click pairs whose stimulus parameters were chosen based on modeling results to test how peripheral processing and frequency dominance contribute to lateralization of PE stimuli. Behavioral results (including unique measures with the lead attenuated relative to the lag) suggest that peripheral interactions between leading and lagging clicks on the basilar membrane and strong weighting of cues around 750 Hz influence lateralization of paired clicks with short ISDs. When combined with auditory nerve adaptation, which emphasizes onset information, lateralization of PE click pairs with a short ISD can be well predicted.  相似文献   

14.
Recent functional magnetic resonance imaging (fMRI) data might be interpreted as being in disagreement with existing psychophysical data regarding the laterality of broadband noise stimuli presented with large interaural time differences (ITDs). This study investigated the possibility that lateral judgments made by inexperienced listeners who did not receive feedback might be different than those reported for experienced listeners, especially when the ITD is longer than that occurring in nature, and therefore data from inexperienced listeners presented unnaturally long ITDs for the first time might be more consistent with the possible interpretation of the fMRI results. The results from this study using inexperienced listeners were not basically different from those reported in the literature based on experienced listeners, suggesting a possible difference does exist between inferences drawn from fTMRI data and human psychophysical results.  相似文献   

15.
Echo suppression plays an important role in identifying and localizing auditory objects. One can distinguish between binaural and monaural echo suppression, although the former is the one commonly referred to. Based on biological findings we introduce and analyze a mathematical model for a neural implementation of monaural echo suppression in the cochlear nucleus. The model's behavior has been verified by analytical calculations as well as by numerical simulations for several types of input signal. It shows that in the perception of a pair of clicks the leading click suppresses the lagging one and that suppression is maximal for an interclick interval of 2-3 ms. Similarly, ongoing stimuli will be affected by the suppression mechanism primarily a couple of milliseconds after onset, resulting in a reduced perception of a sound shortly after its start. Both effects match experimental data.  相似文献   

16.
Several recent investigations suggest that listeners either cannot or do not use envelope-based interaural temporal disparities (ITDs) to lateralize low-frequency sounds [G.B. Henning, J. Acoust. Soc. Am. 68, 446-453 (1980); G.B. Henning and J. Ashton, Hear. Res. 4, 185-194 (1981); G.B. Henning, Hear. Res. 9, 153-172 (1983)]. We believe listeners in those studies may have been unable to process envelope-based ITDs principally because of the types of stimuli utilized. In this study we employed an acoustic "pointing" task in which listeners varied the interaural intensitive difference of a 500-Hz narrow-band noise (the pointer) so that it matched the intracranial position of a second, experimenter-controlled stimulus (the target). Targets were sinusoidally amplitude-modulated tones centered on 500 Hz or 1 kHz, and modulated at 25, 50, or 100 Hz. Targets were presented with either the entire waveform delayed or with only the envelope delayed. The results suggest that delays of the envelope do affect the lateral position of low-frequency targets. However, the envelope-based cues appear to interact with those provided by the dominant fine structure.  相似文献   

17.
This study examined the deleterious effects of a later-arriving sound on the processing of interaural differences of time (IDTs) from a preceding sound. A correlational analysis assessed the relative weight given to IDTs of source and echo clicks for echo delays of 1-64 ms when the echo click was attenuated relative to the source click (0-36 dB). Also measured were proportion correct and the proportion of responses predicted from the weights. The IDTs of source and echo clicks were selected independently from Gaussian distributions (mu=0 s, sigma = 100/s). Listeners were instructed to indicate the laterality of the source click. Equal weight was given to the source and echo clicks for echo delays of 64 ms with no echo attenuation. For echo delays of 16-64 ms, attenuating the echo had no substantial effect on source weight or proportion correct until the echo was attenuated by 18-30 dB. At echo delays < or =4 ms, source weights and proportions correct remained high regardless of echo attenuation. The proportions of responses predicted from the weights were lower at echo delays > or =16 ms. Results were discussed in terms of backward recognition masking and binaural sluggishness and compared to measurements of echo disturbance.  相似文献   

18.
Sound localization allows humans and animals to determine the direction of objects to seek or avoid and indicates the appropriate position to direct visual attention. Interaural time differences (ITDs) and interaural level differences (ILDs) are two primary cues that humans use to localize or lateralize sound sources. There is limited information about behavioral cue sensitivity in animals, especially animals with poor sound localization acuity and small heads, like budgerigars. ITD and ILD thresholds were measured behaviorally in dichotically listening budgerigars equipped with headphones in an identification task. Budgerigars were less sensitive than humans and cats, and more similar to rabbits, barn owls, and monkeys, in their abilities to lateralize dichotic signals. Threshold ITDs were relatively constant for pure tones below 4 kHz, and were immeasurable at higher frequencies. Threshold ILDs were relatively constant over a wide range of frequencies, similar to humans. Thresholds in both experiments were best for broadband noise stimuli. These lateralization results are generally consistent with the free field localization abilities of these birds, and add support to the idea that budgerigars may be able to enhance their cues to directional hearing (e.g., via connected interaural pathways) beyond what would be expected based on head size.  相似文献   

19.
Lateralization of narrow bands of noise was investigated while varying interaural temporal disparity (ITD), center frequency, and bandwidth, utilizing an acoustic pointing task. Stimuli were narrow bands of noise centered at octave intervals between 500 Hz and 4 kHz with bandwidths ranging from 50-400 Hz. In a second experiment, lateralization for bands of noise and sinusoidally amplitude-modulated (SAM) tones, whose spectral content was constrained to be no lower than 3.8 kHz, was assessed. Overall, relatively large extents of laterality were obtained from all four listeners for ITDs of low-frequency bands of noise. Increasing the bandwidth of these noises did not yield consistent changes in the extent of laterality across ITDs and listeners. Most targets centered at high frequencies were lateralized near the midline. However, three of the four listeners did exhibit rather large displacements of the intracranial image when the bandwidth of the high-frequency noises was 400 Hz or greater. Interestingly, ITDs within high-frequency SAM tones were relatively ineffective. Thus, it appears that ITDs of relatively wide-band, high-frequency stimuli can mediate rather substantial extents of laterality. However, these effects are highly listener-dependent.  相似文献   

20.
Listeners have a remarkable ability to localize and identify sound sources in reverberant environments. The term "precedence effect" (PE; also known as the "Haas effect," "law of the first wavefront," and "echo suppression") refers to a group of auditory phenomena that is thought to be related to this ability. Traditionally, three measures have been used to quantify the PE: (1) Fusion: at short delays (1-5 ms for clicks) the lead and lag perceptually fuse into one auditory event; (2) Localization dominance: the perceived location of the leading source dominates that of the lagging source; and (3) Discrimination suppression: at short delays, changes in the location or interaural parameters of the lag are difficult to discriminate compared with changes in characteristics of the lead. Little is known about the relation among these aspects of the PE, since they are rarely studied in the same listeners. In the present study, extensive measurements of these phenomena were made for six normal-hearing listeners using 1-ms noise bursts. The results suggest that, for clicks, fusion lasts 1-5 ms; by 5 ms most listeners hear two sounds on a majority of trials. However, localization dominance and discrimination suppression remain potent for delays of 10 ms or longer. Results are consistent with a simple model in which information from the lead and lag interacts perceptually and in which the strength of this interaction decreases with spatiotemporal separation of the lead and lag. At short delays, lead and lag both contribute to spatial perception, but the lead dominates (to the extent that only one position is ever heard). At the longest delays tested, two distinct sounds are perceived (as measured in a fusion task), but they are not always heard at independent spatial locations (as measured in a localization dominance task). These results suggest that directional cues from the lag are not necessarily salient for all conditions in which the lag is subjectively heard as a separate event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号